小言_互联网的博客

数据结构与算法之美-入门篇-11-排序

304人阅读  评论(0)

我按照时间复杂度把它们分成了三类,分三节课来讲解。

如何分析一个“排序算法”?

排序算法的执行效率

1. 最好情况、最坏情况、平均情况时间复杂度

对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。Ps,针对特定的数据来源的情景,来选择合适的排序算法。

2. 2. 时间复杂度的系数、常数 、低阶

我们知道,时间复杂度反应的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。

3. 比较次数和交换(或移动)次数

这一节和下一节讲的都是基于比较的排序算法。基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。Ps,要考虑要区分是因为,这两个次数的消耗是不同的。

排序算法的内存消耗

我们前面讲过,算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。我们今天讲的三种排序算法,都是原地排序算法。

排序算法的稳定性

仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。
Ps,王争的原话中有个对订单排序的例子来说明为什么要考察排序算法的稳定性。我对这个存疑,即使用不稳定的排序方法,但是排序的比较方法里,加个时间、id的比较条件不就行了么。可能他的意思是,把比较方法搞复杂了,就会有额外的消耗吧。

时间复杂度是n平方的几个排序

冒泡排序(Bubble Sort)

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。

  1. 冒泡排序是原地排序算法
  2. 冒泡排序是稳定的排序算法(为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换)
    3.冒泡排序的时间复杂度 n平方

    最好、最坏情况下的时间复杂度很容易分析,那平均情况下的时间复杂是多少呢?我们前面讲过,平均时间复杂度就是加权平均期望时间复杂度,分析的时候要结合概率论的知识。

对于包含 n 个数据的数组,这 n 个数据就有 n! 种排列方式。不同的排列方式,冒泡排序执行的时间肯定是不同的。比如我们前面举的那两个例子,其中一个要进行 6 次冒泡,而另一个只需要 4 次。如果用概率论方法定量分析平均时间复杂度,涉及的数学推理和计算就会很复杂。我这里还有一种思路,通过有序度逆序度这两个概念来进行分析。(Ps,用传统的方法太难算了,于是搞了个新的概念来简化问题,当然,这样算出来是不严谨的(数值不等于传统的方法)。不过这个不严谨的算法,已经够用了。)

有序度是数组中具有有序关系的元素对的个数。
有序元素对:如果 i < j,有a[i] <= a[j],则a[i] ,a[j]是有序元素对。

同理,对于一个倒序排列的数组,比如 6,5,4,3,2,1,有序度是 0;对于一个完全有序的数组,比如 1,2,3,4,5,6,有序度就是n*(n-1)/2,也就是 15。我们把这种完全有序的数组的有序度叫作满有序度。这里满有序度为15。

逆序度是数组中具有有序关系的元素对的个数。
逆序元素对:如果 i > j,有a[i] >= a[j],则a[i] ,a[j]是逆序元素对。

关于这三个概念,我们还可以得到一个公式:逆序度 = 满有序度 - 有序度。我们排序的过程就是一种增加有序度,减少逆序度的过程,最后达到满有序度,就说明排序完成了。

插入排序(Insertion Sort)

这是一个动态排序的过程,即动态地往有序集合中添加数据,我们可以通过这种方法保持集合中的数据一直有序。而对于一组静态数据,我们也可以借鉴上面讲的插入方法,来进行排序,于是就有了插入排序算法。

  1. 插入排序是原地排序算法
  2. 插入排序是稳定的排序算法
  3. 插入排序的时间复杂度 n平方

选择排序(Selection Sort)


原地,n平方。
选择排序是一种不稳定的排序算法。从我前面画的那张图中,你可以看出来,选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。

冒泡排序VS插入排序

冒泡排序和插入排序的时间复杂度都是 O(n2),都是原地排序算法,为什么插入排序要比冒泡排序更受欢迎呢?

我们前面分析冒泡排序和插入排序的时候讲到,冒泡排序不管怎么优化,元素交换的次数是一个固定值,是原始数据的逆序度。插入排序是同样的,不管怎么优化,元素移动的次数也等于原始数据的逆序度。

但是,从代码实现上来看,冒泡排序的数据交换要比插入排序的数据移动要复杂,冒泡排序需要 3 个赋值操作,而插入排序只需要 1 个。

所以,虽然冒泡排序和插入排序在时间复杂度上是一样的,都是 O(n2),但是如果我们希望把性能优化做到极致,那肯定首选插入排序。插入排序的算法思路也有很大的优化空间,我们只是讲了最基础的一种。如果你对插入排序的优化感兴趣,可以自行学习一下希尔排序

时间复杂度为 O(nlogn) 的两种排序算法

归并排序

什么是归并排序

归并排序(Merge Sort)。

归并排序的核心思想还是蛮简单的。如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。

// 归并排序算法, A 是数组,n 表示数组大小
merge_sort(A, n) {
  merge_sort_c(A, 0, n-1)
}
 
// 递归调用函数
merge_sort_c(A, p, r) {
  // 递归终止条件
  if p >= r  then return
 
  // 取 p 到 r 之间的中间位置 q
  q = (p+r) / 2
  // 分治递归
  merge_sort_c(A, p, q)
  merge_sort_c(A, q+1, r)
  // 将 A[p...q] 和 A[q+1...r] 合并为 A[p...r]
  merge(A[p...r], A[p...q], A[q+1...r])
}

方法merge是这样的,举例说明:
现在我有两个已经排好顺序的数组:int[] arr1 = {2, 7, 8}和int[] arr2 = {1, 4, 9},我还有一个大数组来装载它们int[] arr = new int[6];
1.1
那么,我将两个数组的值进行比较,谁的值比较小,谁就放入大数组中!
首先,拿出arr1[0]和arr2[0]进行比较,显然是arr2[0]比较小,因此将arr2[0]放入大数组中,同时arr2指针往后一格
所以,现在目前为止arr = {1}
1.2
随后,拿arr1[0]和arr2[1]进行比较,显然是arr1[0]比较小,将arr1[0]放入大数组中,同时arr1指针往后一格
所以,现在目前为止arr = {1,2}
1.3
随后,拿arr1[1]和arr2[1]进行比较,显然是arr2[1]比较小,将arr2[1]放入大数组中,同时arr2指针往后一格
所以,现在目前为止arr = {1,2,4}

遍历到最后,我们会将两个已排好序的数组变成一个已排好序的数组arr = {1,2,4,7,8,9}

归并排序的性能分析

归并排序是稳定的排序算法

归并排序的时间复杂度

归并排序涉及递归,时间复杂度的分析稍微有点复杂。我们正好借此机会来学习一下,如何分析递归代码的时间复杂度。

在递归那一节我们讲过,递归的适用场景是,一个问题 a 可以分解为多个子问题 b、c,那求解问题 a 就可以分解为求解问题 b、c。问题 b、c 解决之后,我们再把 b、c 的结果合并成 a 的结果。

如果我们定义求解问题 a 的时间是 T(a),求解问题 b、c 的时间分别是 T(b) 和 T( c),那我们就可以得到这样的递推关系式:

T(a) = T(b) + T(c) + K

其中 K 等于将两个子问题 b、c 的结果合并成问题 a 的结果所消耗的时间。

从刚刚的分析,我们可以得到一个重要的结论:不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式。

套用这个公式,我们来分析一下归并排序的时间复杂度。

我们假设对 n 个元素进行归并排序需要的时间是 T(n),那分解成两个子数组排序的时间都是 T(n/2)。我们知道,merge() 函数合并两个有序子数组的时间复杂度是 O(n)。所以,套用前面的公式,归并排序的时间复杂度的计算公式就是:

T(1) = C;   n=1 时,只需要常量级的执行时间,所以表示为 C。
T(n) = 2*T(n/2) + n; n>1

通过这个公式,如何来求解 T(n) 呢?还不够直观?那我们再进一步分解一下计算过程。

T(n) = 2*T(n/2) + n
     = 2*(2*T(n/4) + n/2) + n = 4*T(n/4) + 2*n
     = 4*(2*T(n/8) + n/4) + 2*n = 8*T(n/8) + 3*n
     = 8*(2*T(n/16) + n/8) + 3*n = 16*T(n/16) + 4*n
     ......
     = 2^k * T(n/2^k) + k * n
     ......

通过这样一步一步分解推导,我们可以得到 T(n) = 2kT(n/2k)+kn。当 T(n/2^k)=T(1) 时,也就是 n/2^k=1,我们得到 k=log2n 。我们将 k 值代入上面的公式,得到 T(n)=Cn+nlog2n 。如果我们用大 O 标记法来表示的话,T(n) 就等于 O(nlogn)。所以归并排序的时间复杂度是 O(nlogn)。

从我们的原理分析和伪代码可以看出,归并排序的执行效率与要排序的原始数组的有序程度无关,所以其时间复杂度是非常稳定的,不管是最好情况、最坏情况,还是平均情况,时间复杂度都是 O(nlogn)。

归并排序的空间复杂度

用来用去都是那个“大数组”,用完会释放。
空间复杂度是 O(n)。

快速排序

快速排序算法(Quicksort),我们习惯性把它简称为“快排”。快排利用的也是分治思想。乍看起来,它有点像归并排序,但是思路其实完全不一样。我们待会会讲两者的区别。现在,我们先来看下快排的核心思想。

什么是快速排序

快排的思想是这样的:如果要排序数组中下标从 p 到 r 之间的一组数据,我们选择 p 到 r 之间的任意一个数据作为 pivot(分区点)。

我们遍历 p 到 r 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。经过这一步骤之后,数组 p 到 r 之间的数据就被分成了三个部分,前面 p 到 q-1 之间都是小于 pivot 的,中间是 pivot,后面的 q+1 到 r 之间是大于 pivot 的。

根据分治、递归的处理思想,我们可以用递归排序下标从 p 到 q-1 之间的数据和下标从 q+1 到 r 之间的数据,直到区间缩小为 1,就说明所有的数据都有序了。

如果我们用递推公式来将上面的过程写出来的话,就是这样:

递推公式:
quick_sort(p…r) = quick_sort(p…q-1) + quick_sort(q+1, r)
 
终止条件:
p >= r

我将递推公式转化成递归代码。跟归并排序一样,我还是用伪代码来实现,你可以翻译成你熟悉的任何语言。

// 快速排序,A 是数组,n 表示数组的大小
quick_sort(A, n) {
  quick_sort_c(A, 0, n-1)
}
// 快速排序递归函数,p,r 为下标
quick_sort_c(A, p, r) {
  if p >= r then return
  
  q = partition(A, p, r) // 获取分区点
  quick_sort_c(A, p, q-1)
  quick_sort_c(A, q+1, r)
}

TODO:
原地分区函数的实现思路非常巧妙,我写成了伪代码,我们一起来看一下。

partition(A, p, r) {
  pivot := A[r]
  i := p
  for j := p to r-1 do {
    if A[j] < pivot {
      swap A[i] with A[j]
      i := i+1
    }
  }
  swap A[i] with A[r]
  return i

这里的处理有点类似选择排序。我们通过游标 i 把 A[p…r-1] 分成两部分。A[p…i-1] 的元素都是小于 pivot 的,我们暂且叫它“已处理区间”,A[i…r-1] 是“未处理区间”。我们每次都从未处理的区间 A[i…r-1] 中取一个元素 A[j],与 pivot 对比,如果小于 pivot,则将其加入到已处理区间的尾部,也就是 A[i] 的位置。

数组的插入操作还记得吗?在数组某个位置插入元素,需要搬移数据,非常耗时。当时我们也讲了一种处理技巧,就是交换,在 O(1) 的时间复杂度内完成插入操作。这里我们也借助这个思想,只需要将 A[i] 与 A[j] 交换,就可以在 O(1) 时间复杂度内将 A[j] 放到下标为 i 的位置。

文字不如图直观,所以我画了一张图来展示分区的整个过程。

因为分区的过程涉及交换操作,如果数组中有两个相同的元素,比如序列 6,8,7,6,3,5,9,4,在经过第一次分区操作之后,两个 6 的相对先后顺序就会改变。所以,快速排序并不是一个稳定的排序算法。


转载:https://blog.csdn.net/winzjqwin/article/details/104632957
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场