小言_互联网的博客

Python pandas库|任凭弱水三千,我只取一瓢饮(6)

403人阅读  评论(0)

上一篇链接:

Python pandas库|任凭弱水三千,我只取一瓢饮(5)_Hann Yang的博客-CSDN博客

DataFrame 类方法(211个,其中包含18个子类、2个子模块)


  
  1. >>> import pandas as pd
  2. >>> funcs = [_ for _ in dir(pd.DataFrame) if 'a'<=_[ 0]<= 'z']
  3. >>> len(funcs)
  4. 211
  5. >>> for i,f in enumerate(funcs, 1):
  6. print( f'{f:18}',end= '' if i% 5 else '\n')
  7. abs add add_prefix add_suffix agg
  8. aggregate align all any append
  9. apply applymap asfreq asof assign
  10. astype at at_time attrs axes
  11. backfill between_time bfill bool boxplot
  12. clip columns combine combine_first compare
  13. convert_dtypes copy corr corrwith count
  14. cov cummax cummin cumprod cumsum
  15. describe diff div divide dot
  16. drop drop_duplicates droplevel dropna dtypes
  17. duplicated empty eq equals eval
  18. ewm expanding explode ffill fillna
  19. filter first first_valid_index flags floordiv
  20. from_dict from_records ge get groupby
  21. gt head hist iat idxmax
  22. idxmin iloc index infer_objects info
  23. insert interpolate isin isna isnull
  24. items iteritems iterrows itertuples join
  25. keys kurt kurtosis last last_valid_index
  26. le loc lookup lt mad
  27. mask max mean median melt
  28. memory_usage merge min mod mode
  29. mul multiply ndim ne nlargest
  30. notna notnull nsmallest nunique pad
  31. pct_change pipe pivot pivot_table plot
  32. pop pow prod product quantile
  33. query radd rank rdiv reindex
  34. reindex_like rename rename_axis reorder_levels replace
  35. resample reset_index rfloordiv rmod rmul
  36. rolling round rpow rsub rtruediv
  37. sample select_dtypes sem set_axis set_flags
  38. set_index shape shift size skew
  39. slice_shift sort_index sort_values sparse squeeze
  40. stack std style sub subtract
  41. sum swapaxes swaplevel tail take
  42. to_clipboard to_csv to_dict to_excel to_feather
  43. to_gbq to_hdf to_html to_json to_latex
  44. to_markdown to_numpy to_parquet to_period to_pickle
  45. to_records to_sql to_stata to_string to_timestamp
  46. to_xarray to_xml transform transpose truediv
  47. truncate tshift tz_convert tz_localize unstack
  48. update value_counts values var where
  49. xs

Series 类方法刚好也有211个:


  
  1. >>> funcs = [_ for _ in dir(pd.Series) if 'a'<=_[ 0]<= 'z']
  2. >>> len(funcs)
  3. 211
  4. >>> for i,f in enumerate(funcs, 1):
  5. print( f'{f:18}',end= '' if i% 5 else '\n')
  6. abs add add_prefix add_suffix agg
  7. aggregate align all any append
  8. apply argmax argmin argsort array
  9. asfreq asof astype at at_time
  10. attrs autocorr axes backfill between
  11. between_time bfill bool cat clip
  12. combine combine_first compare convert_dtypes copy
  13. corr count cov cummax cummin
  14. cumprod cumsum describe diff div
  15. divide divmod dot drop drop_duplicates
  16. droplevel dropna dt dtype dtypes
  17. duplicated empty eq equals ewm
  18. expanding explode factorize ffill fillna
  19. filter first first_valid_index flags floordiv
  20. ge get groupby gt hasnans
  21. head hist iat idxmax idxmin
  22. iloc index infer_objects interpolate is_monotonic
  23. is_monotonic_decreasingis_monotonic_increasingis_unique isin isna
  24. isnull item items iteritems keys
  25. kurt kurtosis last last_valid_index le
  26. loc lt mad map mask
  27. max mean median memory_usage min
  28. mod mode mul multiply name
  29. nbytes ndim ne nlargest notna
  30. notnull nsmallest nunique pad pct_change
  31. pipe plot pop pow prod
  32. product quantile radd rank ravel
  33. rdiv rdivmod reindex reindex_like rename
  34. rename_axis reorder_levels repeat replace resample
  35. reset_index rfloordiv rmod rmul rolling
  36. round rpow rsub rtruediv sample
  37. searchsorted sem set_axis set_flags shape
  38. shift size skew slice_shift sort_index
  39. sort_values sparse squeeze std str
  40. sub subtract sum swapaxes swaplevel
  41. tail take to_clipboard to_csv to_dict
  42. to_excel to_frame to_hdf to_json to_latex
  43. to_list to_markdown to_numpy to_period to_pickle
  44. to_sql to_string to_timestamp to_xarray tolist
  45. transform transpose truediv truncate tshift
  46. tz_convert tz_localize unique unstack update
  47. value_counts values var view where
  48. xs

两者同名的方法有181个,另各有30个不同名的:


  
  1. >>> A,B = [_ for _ in dir(pd.DataFrame) if 'a'<=_[ 0]<= 'z'],[_ for _ in dir(pd.Series) if 'a'<=_[ 0]<= 'z']
  2. >>> len( set(A)& set(B))
  3. 181
  4. >>> len( set(A)| set(B))
  5. 241
  6. >>> len( set(A)- set(B))
  7. 30
  8. >>> len( set(B)- set(A))
  9. 30
  10. >>> for i,f in enumerate( set(A)- set(B), 1):
  11. print( f'{f:18}',end= '' if i% 5 else '\n')
  12. boxplot to_html from_dict to_xml info
  13. corrwith eval to_parquet to_records join
  14. stack columns melt iterrows to_feather
  15. applymap to_stata style pivot set_index
  16. assign itertuples lookup query select_dtypes
  17. from_records insert merge to_gbq pivot_table
  18. >>>
  19. >>> for i,f in enumerate( set(B)- set(A), 1):
  20. print( f'{f:18}',end= '' if i% 5 else '\n')
  21. factorize nbytes between to_list str
  22. argsort rdivmod argmax tolist item
  23. is_monotonic_increasingdt autocorr is_monotonic_decreasingview
  24. repeat name array map dtype
  25. divmod to_frame unique ravel searchsorted
  26. hasnans is_unique is_monotonic cat argmin
  27. >>>
  28. >>> for i,f in enumerate( set(A)& set(B), 1):
  29. print( f'{f:18}',end= '' if i% 5 else '\n')
  30. lt get reorder_levels reindex_like rfloordiv
  31. rtruediv gt diff index update
  32. add_prefix swapaxes reset_index mod reindex
  33. product apply set_flags to_numpy cumprod
  34. min transpose kurtosis to_latex median
  35. eq last_valid_index rename pow all
  36. loc to_pickle squeeze divide duplicated
  37. to_json sort_values astype resample shape
  38. to_xarray to_period kurt ffill idxmax
  39. plot to_clipboard cumsum nlargest var
  40. add abs any tshift nunique
  41. count combine keys values set_axis
  42. isnull sparse first_valid_index combine_first ewm
  43. notnull empty mask truncate to_csv
  44. bool at clip radd to_markdown
  45. value_counts first isna between_time replace
  46. sample idxmin div iloc add_suffix
  47. pipe to_sql items max rsub
  48. flags sem to_string to_excel prod
  49. fillna backfill align pct_change expanding
  50. nsmallest append attrs rmod bfill
  51. ndim rank floordiv unstack groupby
  52. skew quantile copy ne describe
  53. sort_index truediv mode dropna drop
  54. compare tz_convert cov equals memory_usage
  55. sub pad rename_axis ge mean
  56. last cummin notna agg convert_dtypes
  57. round transform asof isin asfreq
  58. slice_shift xs mad infer_objects rpow
  59. drop_duplicates mul cummax corr droplevel
  60. dtypes subtract rdiv filter multiply
  61. to_dict le dot aggregate pop
  62. rolling where interpolate head tail
  63. size iteritems rmul take iat
  64. to_hdf to_timestamp shift hist std
  65. sum at_time tz_localize axes swaplevel
  66. explode

所有函数帮助已上传本站资源版块,欢迎下载: 

https://download.csdn.net/download/boysoft2002/87343363https://download.csdn.net/download/boysoft2002/87343363

to_系列函数:22个 (1~11)

Function01

to_clipboard(self, excel: 'bool_t' = True, sep: 'str | None' = None, **kwargs) -> 'None'
    Copy object to the system clipboard.

Help on function to_clipboard in module pandas.core.generic:

to_clipboard(self, excel: 'bool_t' = True, sep: 'str | None' = None, **kwargs) -> 'None'
    Copy object to the system clipboard.
    
    Write a text representation of object to the system clipboard.
    This can be pasted into Excel, for example.
    
    Parameters
    ----------
    excel : bool, default True
        Produce output in a csv format for easy pasting into excel.
    
        - True, use the provided separator for csv pasting.
        - False, write a string representation of the object to the clipboard.
    
    sep : str, default ``'\t'``
        Field delimiter.
    **kwargs
        These parameters will be passed to DataFrame.to_csv.
    
    See Also
    --------
    DataFrame.to_csv : Write a DataFrame to a comma-separated values
        (csv) file.
    read_clipboard : Read text from clipboard and pass to read_table.
    
    Notes
    -----
    Requirements for your platform.
    
      - Linux : `xclip`, or `xsel` (with `PyQt4` modules)
      - Windows : none
      - OS X : none
    
    Examples
    --------
    Copy the contents of a DataFrame to the clipboard.
    
    >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
    
    >>> df.to_clipboard(sep=',')  # doctest: +SKIP
    ... # Wrote the following to the system clipboard:
    ... # ,A,B,C
    ... # 0,1,2,3
    ... # 1,4,5,6
    
    We can omit the index by passing the keyword `index` and setting
    it to false.
    
    >>> df.to_clipboard(sep=',', index=False)  # doctest: +SKIP
    ... # Wrote the following to the system clipboard:
    ... # A,B,C
    ... # 1,2,3
    ... # 4,5,6

Function02

to_csv(self, path_or_buf: 'FilePathOrBuffer[AnyStr] | None' = None, sep: 'str' = ',', na_rep: 'str' = '', float_format: 'str | None' = None, columns: 'Sequence[Hashable] | None' = None, header: 'bool_t | list[str]' = True, index: 'bool_t' = True, index_label: 'IndexLabel | None' = None, mode: 'str' = 'w', encoding: 'str | None' = None, compression: 'CompressionOptions' = 'infer', quoting: 'int | None' = None, quotechar: 'str' = '"', line_terminator: 'str | None' = None, chunksize: 'int | None' = None, date_format: 'str | None' = None, doublequote: 'bool_t' = True, escapechar: 'str | None' = None, decimal: 'str' = '.', errors: 'str' = 'strict', storage_options: 'StorageOptions' = None) -> 'str | None'

Help on function to_csv in module pandas.core.generic:

to_csv(self, path_or_buf: 'FilePathOrBuffer[AnyStr] | None' = None, sep: 'str' = ',', na_rep: 'str' = '', float_format: 'str | None' = None, columns: 'Sequence[Hashable] | None' = None, header: 'bool_t | list[str]' = True, index: 'bool_t' = True, index_label: 'IndexLabel | None' = None, mode: 'str' = 'w', encoding: 'str | None' = None, compression: 'CompressionOptions' = 'infer', quoting: 'int | None' = None, quotechar: 'str' = '"', line_terminator: 'str | None' = None, chunksize: 'int | None' = None, date_format: 'str | None' = None, doublequote: 'bool_t' = True, escapechar: 'str | None' = None, decimal: 'str' = '.', errors: 'str' = 'strict', storage_options: 'StorageOptions' = None) -> 'str | None'
    Write object to a comma-separated values (csv) file.
    
    Parameters
    ----------
    path_or_buf : str or file handle, default None
        File path or object, if None is provided the result is returned as
        a string.  If a non-binary file object is passed, it should be opened
        with `newline=''`, disabling universal newlines. If a binary
        file object is passed, `mode` might need to contain a `'b'`.
    
        .. versionchanged:: 1.2.0
    
           Support for binary file objects was introduced.
    
    sep : str, default ','
        String of length 1. Field delimiter for the output file.
    na_rep : str, default ''
        Missing data representation.
    float_format : str, default None
        Format string for floating point numbers.
    columns : sequence, optional
        Columns to write.
    header : bool or list of str, default True
        Write out the column names. If a list of strings is given it is
        assumed to be aliases for the column names.
    index : bool, default True
        Write row names (index).
    index_label : str or sequence, or False, default None
        Column label for index column(s) if desired. If None is given, and
        `header` and `index` are True, then the index names are used. A
        sequence should be given if the object uses MultiIndex. If
        False do not print fields for index names. Use index_label=False
        for easier importing in R.
    mode : str
        Python write mode, default 'w'.
    encoding : str, optional
        A string representing the encoding to use in the output file,
        defaults to 'utf-8'. `encoding` is not supported if `path_or_buf`
        is a non-binary file object.
    compression : str or dict, default 'infer'
        If str, represents compression mode. If dict, value at 'method' is
        the compression mode. Compression mode may be any of the following
        possible values: {'infer', 'gzip', 'bz2', 'zip', 'xz', None}. If
        compression mode is 'infer' and `path_or_buf` is path-like, then
        detect compression mode from the following extensions: '.gz',
        '.bz2', '.zip' or '.xz'. (otherwise no compression). If dict given
        and mode is one of {'zip', 'gzip', 'bz2'}, or inferred as
        one of the above, other entries passed as
        additional compression options.
    
        .. versionchanged:: 1.0.0
    
           May now be a dict with key 'method' as compression mode
           and other entries as additional compression options if
           compression mode is 'zip'.
    
        .. versionchanged:: 1.1.0
    
           Passing compression options as keys in dict is
           supported for compression modes 'gzip' and 'bz2'
           as well as 'zip'.
    
        .. versionchanged:: 1.2.0
    
            Compression is supported for binary file objects.
    
        .. versionchanged:: 1.2.0
    
            Previous versions forwarded dict entries for 'gzip' to
            `gzip.open` instead of `gzip.GzipFile` which prevented
            setting `mtime`.
    
    quoting : optional constant from csv module
        Defaults to csv.QUOTE_MINIMAL. If you have set a `float_format`
        then floats are converted to strings and thus csv.QUOTE_NONNUMERIC
        will treat them as non-numeric.
    quotechar : str, default '\"'
        String of length 1. Character used to quote fields.
    line_terminator : str, optional
        The newline character or character sequence to use in the output
        file. Defaults to `os.linesep`, which depends on the OS in which
        this method is called ('\\n' for linux, '\\r\\n' for Windows, i.e.).
    chunksize : int or None
        Rows to write at a time.
    date_format : str, default None
        Format string for datetime objects.
    doublequote : bool, default True
        Control quoting of `quotechar` inside a field.
    escapechar : str, default None
        String of length 1. Character used to escape `sep` and `quotechar`
        when appropriate.
    decimal : str, default '.'
        Character recognized as decimal separator. E.g. use ',' for
        European data.
    errors : str, default 'strict'
        Specifies how encoding and decoding errors are to be handled.
        See the errors argument for :func:`open` for a full list
        of options.
    
        .. versionadded:: 1.1.0
    
    storage_options : dict, optional
        Extra options that make sense for a particular storage connection, e.g.
        host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
        are forwarded to ``urllib`` as header options. For other URLs (e.g.
        starting with "s3://", and "gcs://") the key-value pairs are forwarded to
        ``fsspec``. Please see ``fsspec`` and ``urllib`` for more details.
    
        .. versionadded:: 1.2.0
    
    Returns
    -------
    None or str
        If path_or_buf is None, returns the resulting csv format as a
        string. Otherwise returns None.
    
    See Also
    --------
    read_csv : Load a CSV file into a DataFrame.
    to_excel : Write DataFrame to an Excel file.
    
    Examples
    --------
    >>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'],
    ...                    'mask': ['red', 'purple'],
    ...                    'weapon': ['sai', 'bo staff']})
    >>> df.to_csv(index=False)
    'name,mask,weapon\nRaphael,red,sai\nDonatello,purple,bo staff\n'
    
    Create 'out.zip' containing 'out.csv'
    
    >>> compression_opts = dict(method='zip',
    ...                         archive_name='out.csv')  # doctest: +SKIP
    >>> df.to_csv('out.zip', index=False,
    ...           compression=compression_opts)  # doctest: +SKIP

Function03

to_dict(self, orient: 'str' = 'dict', into=<class 'dict'>)

Help on function to_dict in module pandas.core.frame:

to_dict(self, orient: 'str' = 'dict', into=<class 'dict'>)
    Convert the DataFrame to a dictionary.
    
    The type of the key-value pairs can be customized with the parameters
    (see below).
    
    Parameters
    ----------
    orient : str {'dict', 'list', 'series', 'split', 'records', 'index'}
        Determines the type of the values of the dictionary.
    
        - 'dict' (default) : dict like {column -> {index -> value}}
        - 'list' : dict like {column -> [values]}
        - 'series' : dict like {column -> Series(values)}
        - 'split' : dict like
          {'index' -> [index], 'columns' -> [columns], 'data' -> [values]}
        - 'records' : list like
          [{column -> value}, ... , {column -> value}]
        - 'index' : dict like {index -> {column -> value}}
    
        Abbreviations are allowed. `s` indicates `series` and `sp`
        indicates `split`.
    
    into : class, default dict
        The collections.abc.Mapping subclass used for all Mappings
        in the return value.  Can be the actual class or an empty
        instance of the mapping type you want.  If you want a
        collections.defaultdict, you must pass it initialized.
    
    Returns
    -------
    dict, list or collections.abc.Mapping
        Return a collections.abc.Mapping object representing the DataFrame.
        The resulting transformation depends on the `orient` parameter.
    
    See Also
    --------
    DataFrame.from_dict: Create a DataFrame from a dictionary.
    DataFrame.to_json: Convert a DataFrame to JSON format.
    
    Examples
    --------
    >>> df = pd.DataFrame({'col1': [1, 2],
    ...                    'col2': [0.5, 0.75]},
    ...                   index=['row1', 'row2'])
    >>> df
          col1  col2
    row1     1  0.50
    row2     2  0.75
    >>> df.to_dict()
    {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
    
    You can specify the return orientation.
    
    >>> df.to_dict('series')
    {'col1': row1    1
             row2    2
    Name: col1, dtype: int64,
    'col2': row1    0.50
            row2    0.75
    Name: col2, dtype: float64}
    
    >>> df.to_dict('split')
    {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'],
     'data': [[1, 0.5], [2, 0.75]]}
    
    >>> df.to_dict('records')
    [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
    
    >>> df.to_dict('index')
    {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}
    
    You can also specify the mapping type.
    
    >>> from collections import OrderedDict, defaultdict
    >>> df.to_dict(into=OrderedDict)
    OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])),
                 ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])
    
    If you want a `defaultdict`, you need to initialize it:
    
    >>> dd = defaultdict(list)
    >>> df.to_dict('records', into=dd)
    [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}),
     defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]

Function04

to_excel(self, excel_writer, sheet_name: 'str' = 'Sheet1', na_rep: 'str' = '', float_format: 'str | None' = None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None, storage_options: 'StorageOptions' = None) -> 'None'

Help on function to_excel in module pandas.core.generic:

to_excel(self, excel_writer, sheet_name: 'str' = 'Sheet1', na_rep: 'str' = '', float_format: 'str | None' = None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None, storage_options: 'StorageOptions' = None) -> 'None'
    Write object to an Excel sheet.
    
    To write a single object to an Excel .xlsx file it is only necessary to
    specify a target file name. To write to multiple sheets it is necessary to
    create an `ExcelWriter` object with a target file name, and specify a sheet
    in the file to write to.
    
    Multiple sheets may be written to by specifying unique `sheet_name`.
    With all data written to the file it is necessary to save the changes.
    Note that creating an `ExcelWriter` object with a file name that already
    exists will result in the contents of the existing file being erased.
    
    Parameters
    ----------
    excel_writer : path-like, file-like, or ExcelWriter object
        File path or existing ExcelWriter.
    sheet_name : str, default 'Sheet1'
        Name of sheet which will contain DataFrame.
    na_rep : str, default ''
        Missing data representation.
    float_format : str, optional
        Format string for floating point numbers. For example
        ``float_format="%.2f"`` will format 0.1234 to 0.12.
    columns : sequence or list of str, optional
        Columns to write.
    header : bool or list of str, default True
        Write out the column names. If a list of string is given it is
        assumed to be aliases for the column names.
    index : bool, default True
        Write row names (index).
    index_label : str or sequence, optional
        Column label for index column(s) if desired. If not specified, and
        `header` and `index` are True, then the index names are used. A
        sequence should be given if the DataFrame uses MultiIndex.
    startrow : int, default 0
        Upper left cell row to dump data frame.
    startcol : int, default 0
        Upper left cell column to dump data frame.
    engine : str, optional
        Write engine to use, 'openpyxl' or 'xlsxwriter'. You can also set this
        via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and
        ``io.excel.xlsm.writer``.
    
        .. deprecated:: 1.2.0
    
            As the `xlwt <https://pypi.org/project/xlwt/>`__ package is no longer
            maintained, the ``xlwt`` engine will be removed in a future version
            of pandas.
    
    merge_cells : bool, default True
        Write MultiIndex and Hierarchical Rows as merged cells.
    encoding : str, optional
        Encoding of the resulting excel file. Only necessary for xlwt,
        other writers support unicode natively.
    inf_rep : str, default 'inf'
        Representation for infinity (there is no native representation for
        infinity in Excel).
    verbose : bool, default True
        Display more information in the error logs.
    freeze_panes : tuple of int (length 2), optional
        Specifies the one-based bottommost row and rightmost column that
        is to be frozen.
    storage_options : dict, optional
        Extra options that make sense for a particular storage connection, e.g.
        host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
        are forwarded to ``urllib`` as header options. For other URLs (e.g.
        starting with "s3://", and "gcs://") the key-value pairs are forwarded to
        ``fsspec``. Please see ``fsspec`` and ``urllib`` for more details.
    
        .. versionadded:: 1.2.0
    
    See Also
    --------
    to_csv : Write DataFrame to a comma-separated values (csv) file.
    ExcelWriter : Class for writing DataFrame objects into excel sheets.
    read_excel : Read an Excel file into a pandas DataFrame.
    read_csv : Read a comma-separated values (csv) file into DataFrame.
    
    Notes
    -----
    For compatibility with :meth:`~DataFrame.to_csv`,
    to_excel serializes lists and dicts to strings before writing.
    
    Once a workbook has been saved it is not possible to write further
    data without rewriting the whole workbook.
    
    Examples
    --------
    
    Create, write to and save a workbook:
    
    >>> df1 = pd.DataFrame([['a', 'b'], ['c', 'd']],
    ...                    index=['row 1', 'row 2'],
    ...                    columns=['col 1', 'col 2'])
    >>> df1.to_excel("output.xlsx")  # doctest: +SKIP
    
    To specify the sheet name:
    
    >>> df1.to_excel("output.xlsx",
    ...              sheet_name='Sheet_name_1')  # doctest: +SKIP
    
    If you wish to write to more than one sheet in the workbook, it is
    necessary to specify an ExcelWriter object:
    
    >>> df2 = df1.copy()
    >>> with pd.ExcelWriter('output.xlsx') as writer:  # doctest: +SKIP
    ...     df1.to_excel(writer, sheet_name='Sheet_name_1')
    ...     df2.to_excel(writer, sheet_name='Sheet_name_2')
    
    ExcelWriter can also be used to append to an existing Excel file:
    
    >>> with pd.ExcelWriter('output.xlsx',
    ...                     mode='a') as writer:  # doctest: +SKIP
    ...     df.to_excel(writer, sheet_name='Sheet_name_3')
    
    To set the library that is used to write the Excel file,
    you can pass the `engine` keyword (the default engine is
    automatically chosen depending on the file extension):
    
    >>> df1.to_excel('output1.xlsx', engine='xlsxwriter')  # doctest: +SKIP

Function05

to_feather(self, path: 'FilePathOrBuffer[AnyStr]', **kwargs) -> 'None'

Help on function to_feather in module pandas.core.frame:

to_feather(self, path: 'FilePathOrBuffer[AnyStr]', **kwargs) -> 'None'
    Write a DataFrame to the binary Feather format.
    
    Parameters
    ----------
    path : str or file-like object
        If a string, it will be used as Root Directory path.
    **kwargs :
        Additional keywords passed to :func:`pyarrow.feather.write_feather`.
        Starting with pyarrow 0.17, this includes the `compression`,
        `compression_level`, `chunksize` and `version` keywords.
    
        .. versionadded:: 1.1.0

Function06

to_gbq(self, destination_table: 'str', project_id: 'str | None' = None, chunksize: 'int | None' = None, reauth: 'bool' = False, if_exists: 'str' = 'fail', auth_local_webserver: 'bool' = False, table_schema: 'list[dict[str, str]] | None' = None, location: 'str | None' = None, progress_bar: 'bool' = True, credentials=None) -> 'None'

Help on function to_gbq in module pandas.core.frame:

to_gbq(self, destination_table: 'str', project_id: 'str | None' = None, chunksize: 'int | None' = None, reauth: 'bool' = False, if_exists: 'str' = 'fail', auth_local_webserver: 'bool' = False, table_schema: 'list[dict[str, str]] | None' = None, location: 'str | None' = None, progress_bar: 'bool' = True, credentials=None) -> 'None'
    Write a DataFrame to a Google BigQuery table.
    
    This function requires the `pandas-gbq package
    <https://pandas-gbq.readthedocs.io>`__.
    
    See the `How to authenticate with Google BigQuery
    <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__
    guide for authentication instructions.
    
    Parameters
    ----------
    destination_table : str
        Name of table to be written, in the form ``dataset.tablename``.
    project_id : str, optional
        Google BigQuery Account project ID. Optional when available from
        the environment.
    chunksize : int, optional
        Number of rows to be inserted in each chunk from the dataframe.
        Set to ``None`` to load the whole dataframe at once.
    reauth : bool, default False
        Force Google BigQuery to re-authenticate the user. This is useful
        if multiple accounts are used.
    if_exists : str, default 'fail'
        Behavior when the destination table exists. Value can be one of:
    
        ``'fail'``
            If table exists raise pandas_gbq.gbq.TableCreationError.
        ``'replace'``
            If table exists, drop it, recreate it, and insert data.
        ``'append'``
            If table exists, insert data. Create if does not exist.
    auth_local_webserver : bool, default False
        Use the `local webserver flow`_ instead of the `console flow`_
        when getting user credentials.
    
        .. _local webserver flow:
            https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
        .. _console flow:
            https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console
    
        *New in version 0.2.0 of pandas-gbq*.
    table_schema : list of dicts, optional
        List of BigQuery table fields to which according DataFrame
        columns conform to, e.g. ``[{'name': 'col1', 'type':
        'STRING'},...]``. If schema is not provided, it will be
        generated according to dtypes of DataFrame columns. See
        BigQuery API documentation on available names of a field.
    
        *New in version 0.3.1 of pandas-gbq*.
    location : str, optional
        Location where the load job should run. See the `BigQuery locations
        documentation
        <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
        list of available locations. The location must match that of the
        target dataset.
    
        *New in version 0.5.0 of pandas-gbq*.
    progress_bar : bool, default True
        Use the library `tqdm` to show the progress bar for the upload,
        chunk by chunk.
    
        *New in version 0.5.0 of pandas-gbq*.
    credentials : google.auth.credentials.Credentials, optional
        Credentials for accessing Google APIs. Use this parameter to
        override default credentials, such as to use Compute Engine
        :class:`google.auth.compute_engine.Credentials` or Service
        Account :class:`google.oauth2.service_account.Credentials`
        directly.
    
        *New in version 0.8.0 of pandas-gbq*.
    
    See Also
    --------
    pandas_gbq.to_gbq : This function in the pandas-gbq library.
    read_gbq : Read a DataFrame from Google BigQuery.

Function07

to_hdf(self, path_or_buf, key: 'str', mode: 'str' = 'a', complevel: 'int | None' = None, complib: 'str | None' = None, append: 'bool_t' = False, format: 'str | None' = None, index: 'bool_t' = True, min_itemsize: 'int | dict[str, int] | None' = None, nan_rep=None, dropna: 'bool_t | None' = None, data_columns: 'bool_t | list[str] | None' = None, errors: 'str' = 'strict', encoding: 'str' = 'UTF-8') -> 'None'

Help on function to_hdf in module pandas.core.generic:

to_hdf(self, path_or_buf, key: 'str', mode: 'str' = 'a', complevel: 'int | None' = None, complib: 'str | None' = None, append: 'bool_t' = False, format: 'str | None' = None, index: 'bool_t' = True, min_itemsize: 'int | dict[str, int] | None' = None, nan_rep=None, dropna: 'bool_t | None' = None, data_columns: 'bool_t | list[str] | None' = None, errors: 'str' = 'strict', encoding: 'str' = 'UTF-8') -> 'None'
    Write the contained data to an HDF5 file using HDFStore.
    
    Hierarchical Data Format (HDF) is self-describing, allowing an
    application to interpret the structure and contents of a file with
    no outside information. One HDF file can hold a mix of related objects
    which can be accessed as a group or as individual objects.
    
    In order to add another DataFrame or Series to an existing HDF file
    please use append mode and a different a key.
    
    .. warning::
    
       One can store a subclass of ``DataFrame`` or ``Series`` to HDF5,
       but the type of the subclass is lost upon storing.
    
    For more information see the :ref:`user guide <io.hdf5>`.
    
    Parameters
    ----------
    path_or_buf : str or pandas.HDFStore
        File path or HDFStore object.
    key : str
        Identifier for the group in the store.
    mode : {'a', 'w', 'r+'}, default 'a'
        Mode to open file:
    
        - 'w': write, a new file is created (an existing file with
          the same name would be deleted).
        - 'a': append, an existing file is opened for reading and
          writing, and if the file does not exist it is created.
        - 'r+': similar to 'a', but the file must already exist.
    complevel : {0-9}, optional
        Specifies a compression level for data.
        A value of 0 disables compression.
    complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib'
        Specifies the compression library to be used.
        As of v0.20.2 these additional compressors for Blosc are supported
        (default if no compressor specified: 'blosc:blosclz'):
        {'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy',
        'blosc:zlib', 'blosc:zstd'}.
        Specifying a compression library which is not available issues
        a ValueError.
    append : bool, default False
        For Table formats, append the input data to the existing.
    format : {'fixed', 'table', None}, default 'fixed'
        Possible values:
    
        - 'fixed': Fixed format. Fast writing/reading. Not-appendable,
          nor searchable.
        - 'table': Table format. Write as a PyTables Table structure
          which may perform worse but allow more flexible operations
          like searching / selecting subsets of the data.
        - If None, pd.get_option('io.hdf.default_format') is checked,
          followed by fallback to "fixed"
    errors : str, default 'strict'
        Specifies how encoding and decoding errors are to be handled.
        See the errors argument for :func:`open` for a full list
        of options.
    encoding : str, default "UTF-8"
    min_itemsize : dict or int, optional
        Map column names to minimum string sizes for columns.
    nan_rep : Any, optional
        How to represent null values as str.
        Not allowed with append=True.
    data_columns : list of columns or True, optional
        List of columns to create as indexed data columns for on-disk
        queries, or True to use all columns. By default only the axes
        of the object are indexed. See :ref:`io.hdf5-query-data-columns`.
        Applicable only to format='table'.
    
    See Also
    --------
    read_hdf : Read from HDF file.
    DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
    DataFrame.to_sql : Write to a SQL table.
    DataFrame.to_feather : Write out feather-format for DataFrames.
    DataFrame.to_csv : Write out to a csv file.
    
    Examples
    --------
    >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]},
    ...                   index=['a', 'b', 'c'])
    >>> df.to_hdf('data.h5', key='df', mode='w')
    
    We can add another object to the same file:
    
    >>> s = pd.Series([1, 2, 3, 4])
    >>> s.to_hdf('data.h5', key='s')
    
    Reading from HDF file:
    
    >>> pd.read_hdf('data.h5', 'df')
    A  B
    a  1  4
    b  2  5
    c  3  6
    >>> pd.read_hdf('data.h5', 's')
    0    1
    1    2
    2    3
    3    4
    dtype: int64
    
    Deleting file with data:
    
    >>> import os
    >>> os.remove('data.h5')

Function08

to_html(self, buf: 'FilePathOrBuffer[str] | None' = None, columns: 'Sequence[str] | None' = None, col_space: 'ColspaceArgType | None' = None, header: 'bool | Sequence[str]' = True, index: 'bool' = True, na_rep: 'str' = 'NaN', formatters: 'FormattersType | None' = None, float_format: 'FloatFormatType | None' = None, sparsify: 'bool | None' = None, index_names: 'bool' = True, justify: 'str | None' = None, max_rows: 'int | None' = None, max_cols: 'int | None' = None, show_dimensions: 'bool | str' = False, decimal: 'str' = '.', bold_rows: 'bool' = True, classes: 'str | list | tuple | None' = None, escape: 'bool' = True, notebook: 'bool' = False, border: 'int | None' = None, table_id: 'str | None' = None, render_links: 'bool' = False, encoding: 'str | None' = None)

Help on function to_html in module pandas.core.frame:

to_html(self, buf: 'FilePathOrBuffer[str] | None' = None, columns: 'Sequence[str] | None' = None, col_space: 'ColspaceArgType | None' = None, header: 'bool | Sequence[str]' = True, index: 'bool' = True, na_rep: 'str' = 'NaN', formatters: 'FormattersType | None' = None, float_format: 'FloatFormatType | None' = None, sparsify: 'bool | None' = None, index_names: 'bool' = True, justify: 'str | None' = None, max_rows: 'int | None' = None, max_cols: 'int | None' = None, show_dimensions: 'bool | str' = False, decimal: 'str' = '.', bold_rows: 'bool' = True, classes: 'str | list | tuple | None' = None, escape: 'bool' = True, notebook: 'bool' = False, border: 'int | None' = None, table_id: 'str | None' = None, render_links: 'bool' = False, encoding: 'str | None' = None)
    Render a DataFrame as an HTML table.
    
    Parameters
    ----------
    buf : str, Path or StringIO-like, optional, default None
        Buffer to write to. If None, the output is returned as a string.
    columns : sequence, optional, default None
        The subset of columns to write. Writes all columns by default.
    col_space : str or int, list or dict of int or str, optional
        The minimum width of each column in CSS length units.  An int is assumed to be px units.
    
        .. versionadded:: 0.25.0
            Ability to use str.
    header : bool, optional
        Whether to print column labels, default True.
    index : bool, optional, default True
        Whether to print index (row) labels.
    na_rep : str, optional, default 'NaN'
        String representation of ``NaN`` to use.
    formatters : list, tuple or dict of one-param. functions, optional
        Formatter functions to apply to columns' elements by position or
        name.
        The result of each function must be a unicode string.
        List/tuple must be of length equal to the number of columns.
    float_format : one-parameter function, optional, default None
        Formatter function to apply to columns' elements if they are
        floats. This function must return a unicode string and will be
        applied only to the non-``NaN`` elements, with ``NaN`` being
        handled by ``na_rep``.
    
        .. versionchanged:: 1.2.0
    
    sparsify : bool, optional, default True
        Set to False for a DataFrame with a hierarchical index to print
        every multiindex key at each row.
    index_names : bool, optional, default True
        Prints the names of the indexes.
    justify : str, default None
        How to justify the column labels. If None uses the option from
        the print configuration (controlled by set_option), 'right' out
        of the box. Valid values are
    
        * left
        * right
        * center
        * justify
        * justify-all
        * start
        * end
        * inherit
        * match-parent
        * initial
        * unset.
    max_rows : int, optional
        Maximum number of rows to display in the console.
    min_rows : int, optional
        The number of rows to display in the console in a truncated repr
        (when number of rows is above `max_rows`).
    max_cols : int, optional
        Maximum number of columns to display in the console.
    show_dimensions : bool, default False
        Display DataFrame dimensions (number of rows by number of columns).
    decimal : str, default '.'
        Character recognized as decimal separator, e.g. ',' in Europe.
    
    bold_rows : bool, default True
        Make the row labels bold in the output.
    classes : str or list or tuple, default None
        CSS class(es) to apply to the resulting html table.
    escape : bool, default True
        Convert the characters <, >, and & to HTML-safe sequences.
    notebook : {True, False}, default False
        Whether the generated HTML is for IPython Notebook.
    border : int
        A ``border=border`` attribute is included in the opening
        `<table>` tag. Default ``pd.options.display.html.border``.
    encoding : str, default "utf-8"
        Set character encoding.
    
        .. versionadded:: 1.0
    
    table_id : str, optional
        A css id is included in the opening `<table>` tag if specified.
    render_links : bool, default False
        Convert URLs to HTML links.
    
    Returns
    -------
    str or None
        If buf is None, returns the result as a string. Otherwise returns
        None.
    
    See Also
    --------
    to_string : Convert DataFrame to a string.

Function09

to_json(self, path_or_buf: 'FilePathOrBuffer | None' = None, orient: 'str | None' = None, date_format: 'str | None' = None, double_precision: 'int' = 10, force_ascii: 'bool_t' = True, date_unit: 'str' = 'ms', default_handler: 'Callable[[Any], JSONSerializable] | None' = None, lines: 'bool_t' = False, compression: 'CompressionOptions' = 'infer', index: 'bool_t' = True, indent: 'int | None' = None, storage_options: 'StorageOptions' = None) -> 'str | None'

Help on function to_json in module pandas.core.generic:

to_json(self, path_or_buf: 'FilePathOrBuffer | None' = None, orient: 'str | None' = None, date_format: 'str | None' = None, double_precision: 'int' = 10, force_ascii: 'bool_t' = True, date_unit: 'str' = 'ms', default_handler: 'Callable[[Any], JSONSerializable] | None' = None, lines: 'bool_t' = False, compression: 'CompressionOptions' = 'infer', index: 'bool_t' = True, indent: 'int | None' = None, storage_options: 'StorageOptions' = None) -> 'str | None'
    Convert the object to a JSON string.
    
    Note NaN's and None will be converted to null and datetime objects
    will be converted to UNIX timestamps.
    
    Parameters
    ----------
    path_or_buf : str or file handle, optional
        File path or object. If not specified, the result is returned as
        a string.
    orient : str
        Indication of expected JSON string format.
    
        * Series:
    
            - default is 'index'
            - allowed values are: {'split', 'records', 'index', 'table'}.
    
        * DataFrame:
    
            - default is 'columns'
            - allowed values are: {'split', 'records', 'index', 'columns',
              'values', 'table'}.
    
        * The format of the JSON string:
    
            - 'split' : dict like {'index' -> [index], 'columns' -> [columns],
              'data' -> [values]}
            - 'records' : list like [{column -> value}, ... , {column -> value}]
            - 'index' : dict like {index -> {column -> value}}
            - 'columns' : dict like {column -> {index -> value}}
            - 'values' : just the values array
            - 'table' : dict like {'schema': {schema}, 'data': {data}}
    
            Describing the data, where data component is like ``orient='records'``.
    
    date_format : {None, 'epoch', 'iso'}
        Type of date conversion. 'epoch' = epoch milliseconds,
        'iso' = ISO8601. The default depends on the `orient`. For
        ``orient='table'``, the default is 'iso'. For all other orients,
        the default is 'epoch'.
    double_precision : int, default 10
        The number of decimal places to use when encoding
        floating point values.
    force_ascii : bool, default True
        Force encoded string to be ASCII.
    date_unit : str, default 'ms' (milliseconds)
        The time unit to encode to, governs timestamp and ISO8601
        precision.  One of 's', 'ms', 'us', 'ns' for second, millisecond,
        microsecond, and nanosecond respectively.
    default_handler : callable, default None
        Handler to call if object cannot otherwise be converted to a
        suitable format for JSON. Should receive a single argument which is
        the object to convert and return a serialisable object.
    lines : bool, default False
        If 'orient' is 'records' write out line-delimited json format. Will
        throw ValueError if incorrect 'orient' since others are not
        list-like.
    
    compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}
    
        A string representing the compression to use in the output file,
        only used when the first argument is a filename. By default, the
        compression is inferred from the filename.
    index : bool, default True
        Whether to include the index values in the JSON string. Not
        including the index (``index=False``) is only supported when
        orient is 'split' or 'table'.
    indent : int, optional
       Length of whitespace used to indent each record.
    
       .. versionadded:: 1.0.0
    
    storage_options : dict, optional
        Extra options that make sense for a particular storage connection, e.g.
        host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
        are forwarded to ``urllib`` as header options. For other URLs (e.g.
        starting with "s3://", and "gcs://") the key-value pairs are forwarded to
        ``fsspec``. Please see ``fsspec`` and ``urllib`` for more details.
    
        .. versionadded:: 1.2.0
    
    Returns
    -------
    None or str
        If path_or_buf is None, returns the resulting json format as a
        string. Otherwise returns None.
    
    See Also
    --------
    read_json : Convert a JSON string to pandas object.
    
    Notes
    -----
    The behavior of ``indent=0`` varies from the stdlib, which does not
    indent the output but does insert newlines. Currently, ``indent=0``
    and the default ``indent=None`` are equivalent in pandas, though this
    may change in a future release.
    
    ``orient='table'`` contains a 'pandas_version' field under 'schema'.
    This stores the version of `pandas` used in the latest revision of the
    schema.
    
    Examples
    --------
    >>> import json
    >>> df = pd.DataFrame(
    ...     [["a", "b"], ["c", "d"]],
    ...     index=["row 1", "row 2"],
    ...     columns=["col 1", "col 2"],
    ... )
    
    >>> result = df.to_json(orient="split")
    >>> parsed = json.loads(result)
    >>> json.dumps(parsed, indent=4)  # doctest: +SKIP
    {
        "columns": [
            "col 1",
            "col 2"
        ],
        "index": [
            "row 1",
            "row 2"
        ],
        "data": [
            [
                "a",
                "b"
            ],
            [
                "c",
                "d"
            ]
        ]
    }
    
    Encoding/decoding a Dataframe using ``'records'`` formatted JSON.
    Note that index labels are not preserved with this encoding.
    
    >>> result = df.to_json(orient="records")
    >>> parsed = json.loads(result)
    >>> json.dumps(parsed, indent=4)  # doctest: +SKIP
    [
        {
            "col 1": "a",
            "col 2": "b"
        },
        {
            "col 1": "c",
            "col 2": "d"
        }
    ]
    
    Encoding/decoding a Dataframe using ``'index'`` formatted JSON:
    
    >>> result = df.to_json(orient="index")
    >>> parsed = json.loads(result)
    >>> json.dumps(parsed, indent=4)  # doctest: +SKIP
    {
        "row 1": {
            "col 1": "a",
            "col 2": "b"
        },
        "row 2": {
            "col 1": "c",
            "col 2": "d"
        }
    }
    
    Encoding/decoding a Dataframe using ``'columns'`` formatted JSON:
    
    >>> result = df.to_json(orient="columns")
    >>> parsed = json.loads(result)
    >>> json.dumps(parsed, indent=4)  # doctest: +SKIP
    {
        "col 1": {
            "row 1": "a",
            "row 2": "c"
        },
        "col 2": {
            "row 1": "b",
            "row 2": "d"
        }
    }
    
    Encoding/decoding a Dataframe using ``'values'`` formatted JSON:
    
    >>> result = df.to_json(orient="values")
    >>> parsed = json.loads(result)
    >>> json.dumps(parsed, indent=4)  # doctest: +SKIP
    [
        [
            "a",
            "b"
        ],
        [
            "c",
            "d"
        ]
    ]
    
    Encoding with Table Schema:
    
    >>> result = df.to_json(orient="table")
    >>> parsed = json.loads(result)
    >>> json.dumps(parsed, indent=4)  # doctest: +SKIP
    {
        "schema": {
            "fields": [
                {
                    "name": "index",
                    "type": "string"
                },
                {
                    "name": "col 1",
                    "type": "string"
                },
                {
                    "name": "col 2",
                    "type": "string"
                }
            ],
            "primaryKey": [
                "index"
            ],
            "pandas_version": "0.20.0"
        },
        "data": [
            {
                "index": "row 1",
                "col 1": "a",
                "col 2": "b"
            },
            {
                "index": "row 2",
                "col 1": "c",
                "col 2": "d"
            }
        ]
    }

Function10

to_latex(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal='.', multicolumn=None, multicolumn_format=None, multirow=None, caption=None, label=None, position=None)

Help on function to_latex in module pandas.core.generic:

to_latex(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal='.', multicolumn=None, multicolumn_format=None, multirow=None, caption=None, label=None, position=None)
    Render object to a LaTeX tabular, longtable, or nested table/tabular.
    
    Requires ``\usepackage{booktabs}``.  The output can be copy/pasted
    into a main LaTeX document or read from an external file
    with ``\input{table.tex}``.
    
    .. versionchanged:: 1.0.0
       Added caption and label arguments.
    
    .. versionchanged:: 1.2.0
       Added position argument, changed meaning of caption argument.
    
    Parameters
    ----------
    buf : str, Path or StringIO-like, optional, default None
        Buffer to write to. If None, the output is returned as a string.
    columns : list of label, optional
        The subset of columns to write. Writes all columns by default.
    col_space : int, optional
        The minimum width of each column.
    header : bool or list of str, default True
        Write out the column names. If a list of strings is given,
        it is assumed to be aliases for the column names.
    index : bool, default True
        Write row names (index).
    na_rep : str, default 'NaN'
        Missing data representation.
    formatters : list of functions or dict of {str: function}, optional
        Formatter functions to apply to columns' elements by position or
        name. The result of each function must be a unicode string.
        List must be of length equal to the number of columns.
    float_format : one-parameter function or str, optional, default None
        Formatter for floating point numbers. For example
        ``float_format="%.2f"`` and ``float_format="{:0.2f}".format`` will
        both result in 0.1234 being formatted as 0.12.
    sparsify : bool, optional
        Set to False for a DataFrame with a hierarchical index to print
        every multiindex key at each row. By default, the value will be
        read from the config module.
    index_names : bool, default True
        Prints the names of the indexes.
    bold_rows : bool, default False
        Make the row labels bold in the output.
    column_format : str, optional
        The columns format as specified in `LaTeX table format
        <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g. 'rcl' for 3
        columns. By default, 'l' will be used for all columns except
        columns of numbers, which default to 'r'.
    longtable : bool, optional
        By default, the value will be read from the pandas config
        module. Use a longtable environment instead of tabular. Requires
        adding a \usepackage{longtable} to your LaTeX preamble.
    escape : bool, optional
        By default, the value will be read from the pandas config
        module. When set to False prevents from escaping latex special
        characters in column names.
    encoding : str, optional
        A string representing the encoding to use in the output file,
        defaults to 'utf-8'.
    decimal : str, default '.'
        Character recognized as decimal separator, e.g. ',' in Europe.
    multicolumn : bool, default True
        Use \multicolumn to enhance MultiIndex columns.
        The default will be read from the config module.
    multicolumn_format : str, default 'l'
        The alignment for multicolumns, similar to `column_format`
        The default will be read from the config module.
    multirow : bool, default False
        Use \multirow to enhance MultiIndex rows. Requires adding a
        \usepackage{multirow} to your LaTeX preamble. Will print
        centered labels (instead of top-aligned) across the contained
        rows, separating groups via clines. The default will be read
        from the pandas config module.
    caption : str or tuple, optional
        Tuple (full_caption, short_caption),
        which results in ``\caption[short_caption]{full_caption}``;
        if a single string is passed, no short caption will be set.
    
        .. versionadded:: 1.0.0
    
        .. versionchanged:: 1.2.0
           Optionally allow caption to be a tuple ``(full_caption, short_caption)``.
    
    label : str, optional
        The LaTeX label to be placed inside ``\label{}`` in the output.
        This is used with ``???`` in the main ``.tex`` file.
    
        .. versionadded:: 1.0.0
    position : str, optional
        The LaTeX positional argument for tables, to be placed after
        ``\begin{}`` in the output.
    
        .. versionadded:: 1.2.0
    
            Returns
            -------
            str or None
                If buf is None, returns the result as a string. Otherwise returns
                None.
        
    See Also
    --------
    DataFrame.to_string : Render a DataFrame to a console-friendly
        tabular output.
    DataFrame.to_html : Render a DataFrame as an HTML table.
    
    Examples
    --------
    >>> df = pd.DataFrame(dict(name=['Raphael', 'Donatello'],
    ...                   mask=['red', 'purple'],
    ...                   weapon=['sai', 'bo staff']))
    >>> print(df.to_latex(index=False))  # doctest: +NORMALIZE_WHITESPACE
    \begin{tabular}{lll}
     \toprule
           name &    mask &    weapon \\
     \midrule
        Raphael &     red &       sai \\
      Donatello &  purple &  bo staff \\
    \bottomrule
    \end{tabular}

Function11

to_markdown(self, buf: 'IO[str] | str | None' = None, mode: 'str' = 'wt', index: 'bool' = True, storage_options: 'StorageOptions' = None, **kwargs) -> 'str | None'

Help on function to_markdown in module pandas.core.frame:

to_markdown(self, buf: 'IO[str] | str | None' = None, mode: 'str' = 'wt', index: 'bool' = True, storage_options: 'StorageOptions' = None, **kwargs) -> 'str | None'
    Print DataFrame in Markdown-friendly format.
    
    .. versionadded:: 1.0.0
    
    Parameters
    ----------
    buf : str, Path or StringIO-like, optional, default None
        Buffer to write to. If None, the output is returned as a string.
    mode : str, optional
        Mode in which file is opened, "wt" by default.
    index : bool, optional, default True
        Add index (row) labels.
    
        .. versionadded:: 1.1.0
    storage_options : dict, optional
        Extra options that make sense for a particular storage connection, e.g.
        host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
        are forwarded to ``urllib`` as header options. For other URLs (e.g.
        starting with "s3://", and "gcs://") the key-value pairs are forwarded to
        ``fsspec``. Please see ``fsspec`` and ``urllib`` for more details.
    
        .. versionadded:: 1.2.0
    
    **kwargs
        These parameters will be passed to `tabulate                 <https://pypi.org/project/tabulate>`_.
    
    Returns
    -------
    str
        DataFrame in Markdown-friendly format.
    
    Notes
    -----
    Requires the `tabulate <https://pypi.org/project/tabulate>`_ package.
    
    Examples
    --------
    >>> s = pd.Series(["elk", "pig", "dog", "quetzal"], name="animal")
    >>> print(s.to_markdown())
    |    | animal   |
    |---:|:---------|
    |  0 | elk      |
    |  1 | pig      |
    |  2 | dog      |
    |  3 | quetzal  |
    
    Output markdown with a tabulate option.
    
    >>> print(s.to_markdown(tablefmt="grid"))
    +----+----------+
    |    | animal   |
    +====+==========+
    |  0 | elk      |
    +----+----------+
    |  1 | pig      |
    +----+----------+
    |  2 | dog      |
    +----+----------+
    |  3 | quetzal  |
    +----+----------+

待续......


下一篇链接:

https://blog.csdn.net/boysoft2002/article/details/128433354


转载:https://blog.csdn.net/boysoft2002/article/details/128431737
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场