一、CNN基础流程图
卷积:对数据升维
下采样:对数据降维
二、CNN的两个阶段
特征提取阶段:通过卷积和下采样对图像数据进行升维和降维,从而实现特征提取
分类器:将特征提取阶段输出的数据展平成一维,再通过全连接层进行分类
三、卷积的基本知识
卷积后数据维度会变(比如信道数增加、宽度和高度减小)
3.1 单信道的卷积
然后通过滑动卷积框,多次进行卷积计算,直到卷积框移动到Input最下最右,此时就将输出矩阵的信息补充完整了
3.2 三信道的卷积
3.3 N信道卷积
3.4 输入N信道-输出M信道卷积
原理:采用M个卷积核对Input进行卷积,这样就得到了M层的输出
PyTorch代码实现卷积:
import torch
in_channels, out_channels = 5, 10 # 输入信道数、输出信道数
w, h = 100, 100 # 输入图片尺寸
kernel_size = (3, 3) # 卷积核大小3*3
batch_size = 1 # 每次参与模型更新的数据数量
input = torch.randn(batch_size, in_channels, w, h) # torch.randn 随机产生输入数据
conv_layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size) # 定义卷积层(输入信道数,输出信道数,卷积核大小)
output = conv_layer(input) # 进行卷积操作
# 输出输入、输出和卷积层权重的形状
print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)
输出:
torch.Size([1, 5, 100, 100])
torch.Size([1, 10, 98, 98])
torch.Size([10, 5, 3, 3])
3.5 卷积层的常见参数
3.5.1 Padding
Padding:在输入数据的四周进行扩展的数量,比如Padding = (1,1)代表在输入数据的四周一圈扩展并填充0
一般地:
当卷积核大小为3×3时:Padding=(1,1)
当卷积核大小为5×5时:Padding=(2,2)
…
当卷积核大小为n×n时:Padding=(m,m),其中 m =(n-1)/2,n为奇数
Padding默认填充0
Padding的意义:
- 为了不丢弃原图信息
- 为了保持feature map 的大小与原图一致
- 为了让更深层的layer的input依旧保持有足够大的信息量
- 为了实现上述目的,且不做多余的事情,padding出来的pixel的值都是0,不存在噪音问题。
PyTorch代码体会Padding:
import torch
input = [3, 4, 6, 5, 7,
2, 4, 6, 8, 2,
1, 6, 7, 8, 4,
9, 7, 4, 6, 2,
3, 7, 5, 4, 1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=(3, 3), padding=(1, 1), bias=False)
kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data
output = conv_layer(input)
print(output)
输出:
tensor([[[[ 91., 168., 224., 215., 127.],
[114., 211., 295., 262., 149.],
[192., 259., 282., 214., 122.],
[194., 251., 253., 169., 86.],
[ 96., 112., 110., 68., 31.]]]], grad_fn=<ThnnConv2DBackward>)
3.5.2 Stride
Stride:卷积核滑动的步长,为一个元组。如Stride =(2,2)分别表示宽和高方向上的滑动步长
PyTorch代码体会Stride:
import torch
input = [3, 4, 6, 5, 7,
2, 4, 6, 8, 2,
1, 6, 7, 8, 4,
9, 7, 4, 6, 2,
3, 7, 5, 4, 1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=(3, 3), stride=(2, 2), bias=False)
kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)
conv_layer.weight.data = kernel.data
output = conv_layer(input)
print(output)
输出:
tensor([[[[211., 262.],
[251., 169.]]]], grad_fn=<ThnnConv2DBackward>)
3.5.3 下采样(MaxPooling)
最常用的下采样方法是最大池化(Max Pooling)
如下图所示,MaxPooling=(2,2),即将输入数据分成四个(2,2)无交集的区域,然后选取每个区域的最大值作为输出数据
由MaxPooling的计算特性可知,MaxPooling不会对信道的数量产生影响
PyTorch代码体会MaxPooling:
import torch
input = [3, 4, 6, 5,
2, 4, 6, 8,
1, 6, 7, 5,
9, 7, 4, 6]
input = torch.Tensor(input).view(1, 1, 4, 4)
max_pooling_layer = torch.nn.MaxPool2d(kernel_size=(2, 2))
output = max_pooling_layer(input)
print(output)
输出:
tensor([[[[4., 8.],
[9., 7.]]]])
四、实现一个简单的CNN
4.1 网络结构图
4.2 PyTorch代码-CPU
构建网络模型:
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=(5, 5))
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=(5, 5))
self.pooling = torch.nn.MaxPool2d((2, 2))
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
batch_size = x.size(0)
x = torch.relu(self.pooling(self.conv1(x)))
x = torch.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1)
x = self.fc(x)
return x
完整代码:
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.optim as optim
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=(5, 5))
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=(5, 5))
self.pooling = torch.nn.MaxPool2d((2, 2))
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
batch_size = x.size(0)
x = torch.relu(self.pooling(self.conv1(x)))
x = torch.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1)
x = self.fc(x)
return x
# 单次训练函数
def train(epoch, criterion):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
# 单次测试函数
def ttt():
correct = 0.0
total = 0.0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))
if __name__ == '__main__':
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# 声明模型
model = Net()
# 定义损失函数
criterion = torch.nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
for epoch in range(10):
train(epoch, criterion)
ttt()
输出:
[1, 300] loss: 0.564
[1, 600] loss: 0.191
[1, 900] loss: 0.141
Accuracy on test set: 96 %
[2, 300] loss: 0.110
[2, 600] loss: 0.092
[2, 900] loss: 0.088
Accuracy on test set: 97 %
[3, 300] loss: 0.079
[3, 600] loss: 0.072
[3, 900] loss: 0.069
Accuracy on test set: 98 %
[4, 300] loss: 0.064
[4, 600] loss: 0.056
[4, 900] loss: 0.063
Accuracy on test set: 98 %
[5, 300] loss: 0.052
[5, 600] loss: 0.053
[5, 900] loss: 0.055
Accuracy on test set: 98 %
[6, 300] loss: 0.048
[6, 600] loss: 0.050
[6, 900] loss: 0.045
Accuracy on test set: 98 %
[7, 300] loss: 0.048
[7, 600] loss: 0.042
[7, 900] loss: 0.041
Accuracy on test set: 98 %
[8, 300] loss: 0.039
[8, 600] loss: 0.042
[8, 900] loss: 0.040
Accuracy on test set: 98 %
[9, 300] loss: 0.039
[9, 600] loss: 0.034
[9, 900] loss: 0.039
Accuracy on test set: 98 %
[10, 300] loss: 0.034
[10, 600] loss: 0.036
[10, 900] loss: 0.035
Accuracy on test set: 98 %
4.3 PyTorch代码-GPU
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.optim as optim
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=(5, 5))
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=(5, 5))
self.pooling = torch.nn.MaxPool2d((2, 2))
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
batch_size = x.size(0)
x = torch.relu(self.pooling(self.conv1(x)))
x = torch.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1)
x = self.fc(x)
return x
# 单次训练函数
def train(epoch, criterion):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
# 将inputs, target转移到Gpu或者Cpu上
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
# 单次测试函数
def ttt():
correct = 0.0
total = 0.0
with torch.no_grad():
for data in test_loader:
images, labels = data
# 将images, labels转移到Gpu或者Cpu上
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))
if __name__ == '__main__':
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 声明模型
model = Net()
# 将模型转移道Gpu或者Cpu上
model.to(device)
# 定义损失函数
criterion = torch.nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
for epoch in range(10):
train(epoch, criterion)
ttt()
输出:
[1, 300] loss: 0.666
[1, 600] loss: 0.206
[1, 900] loss: 0.148
Accuracy on test set: 96 % [9652/10000]
[2, 300] loss: 0.117
[2, 600] loss: 0.109
[2, 900] loss: 0.097
Accuracy on test set: 97 % [9749/10000]
[3, 300] loss: 0.080
[3, 600] loss: 0.082
[3, 900] loss: 0.077
Accuracy on test set: 98 % [9804/10000]
[4, 300] loss: 0.067
[4, 600] loss: 0.070
[4, 900] loss: 0.062
Accuracy on test set: 98 % [9814/10000]
[5, 300] loss: 0.056
[5, 600] loss: 0.060
[5, 900] loss: 0.059
Accuracy on test set: 98 % [9845/10000]
[6, 300] loss: 0.053
[6, 600] loss: 0.047
[6, 900] loss: 0.054
Accuracy on test set: 98 % [9855/10000]
[7, 300] loss: 0.047
[7, 600] loss: 0.048
[7, 900] loss: 0.044
Accuracy on test set: 98 % [9845/10000]
[8, 300] loss: 0.044
[8, 600] loss: 0.041
[8, 900] loss: 0.042
Accuracy on test set: 98 % [9883/10000]
[9, 300] loss: 0.040
[9, 600] loss: 0.039
[9, 900] loss: 0.041
Accuracy on test set: 98 % [9867/10000]
[10, 300] loss: 0.038
[10, 600] loss: 0.036
[10, 900] loss: 0.038
Accuracy on test set: 98 % [9872/10000]
4.4 课后作业(尝试更复杂的CNN)
PyTorch-GPU代码实现:
除了上图所示的改变外,我还做了以下2点改变:
- 为了获得更多的特征。增加了每个层的信道数量
- 为了获得更多的特征,并考虑到计算量开销,采取了卷积核大小逐层递减的策略,第一层卷积核大小设置为(9,9),第二层卷积核大小设置为(7,7),第三层卷积核大小设置为(5,5),为了保证足够多的特征数量,每一层都采用了padding
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.optim as optim
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 20, padding=(4, 4), kernel_size=(9, 9))
self.conv2 = torch.nn.Conv2d(20, 40, padding=(3, 3), kernel_size=(7, 7))
self.conv3 = torch.nn.Conv2d(40, 60, padding=(2, 2), kernel_size=(5, 5))
self.pooling = torch.nn.MaxPool2d((2, 2))
self.fc1 = torch.nn.Linear(540, 256)
self.fc2 = torch.nn.Linear(256, 10)
def forward(self, x):
batch_size = x.size(0)
x = torch.relu(self.pooling(self.conv1(x)))
x = torch.relu(self.pooling(self.conv2(x)))
x = torch.relu(self.pooling(self.conv3(x)))
x = x.view(batch_size, -1)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 单次训练函数
def train(epoch, criterion):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
# 将inputs, target转移到Gpu或者Cpu上
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
# 单次测试函数
def ttt():
correct = 0.0
total = 0.0
with torch.no_grad():
for data in test_loader:
images, labels = data
# 将images, labels转移到Gpu或者Cpu上
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))
if __name__ == '__main__':
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 声明模型
model = Net()
# 将模型转移道Gpu或者Cpu上
model.to(device)
# 定义损失函数
criterion = torch.nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
for epoch in range(10):
train(epoch, criterion)
ttt()
输出:
[1, 300] loss: 1.350
[1, 600] loss: 0.215
[1, 900] loss: 0.139
Accuracy on test set: 96 % [9684/10000]
[2, 300] loss: 0.103
[2, 600] loss: 0.090
[2, 900] loss: 0.079
Accuracy on test set: 98 % [9800/10000]
[3, 300] loss: 0.070
[3, 600] loss: 0.064
[3, 900] loss: 0.060
Accuracy on test set: 98 % [9856/10000]
[4, 300] loss: 0.048
[4, 600] loss: 0.053
[4, 900] loss: 0.051
Accuracy on test set: 98 % [9833/10000]
[5, 300] loss: 0.044
[5, 600] loss: 0.040
[5, 900] loss: 0.041
Accuracy on test set: 98 % [9850/10000]
[6, 300] loss: 0.032
[6, 600] loss: 0.039
[6, 900] loss: 0.036
Accuracy on test set: 98 % [9889/10000]
[7, 300] loss: 0.027
[7, 600] loss: 0.033
[7, 900] loss: 0.031
Accuracy on test set: 99 % [9906/10000]
[8, 300] loss: 0.023
[8, 600] loss: 0.028
[8, 900] loss: 0.027
Accuracy on test set: 99 % [9903/10000]
[9, 300] loss: 0.022
[9, 600] loss: 0.025
[9, 900] loss: 0.023
Accuracy on test set: 98 % [9873/10000]
[10, 300] loss: 0.020
[10, 600] loss: 0.019
[10, 900] loss: 0.021
Accuracy on test set: 99 % [9910/10000]
从输出结果可以看出,正确率从之前的98%提升至了99%,说明本节建立的三层CNN模型比之前的两层CNN模型具有更好的特征提取能力和分类能力。
转载:https://blog.csdn.net/weixin_51545953/article/details/126864098