在mysql中information_schema这个数据库中保存了mysql服务器所有数据库的信息,
而在clickhouse,我们可以通过system.parts查看clickhouse数据库和表的容量大小、行数、压缩率以及分区信息。
在此通过测试数据库来说明。
1.查看数据库容量、行数、压缩率
SELECT
sum(rows) AS `总行数`,
formatReadableSize(sum(data_uncompressed_bytes)) AS `原始大小`,
formatReadableSize(sum(data_compressed_bytes)) AS `压缩大小`,
round((sum(data_compressed_bytes) / sum(data_uncompressed_bytes)) * 100, 0) AS `压缩率`
FROM system.parts
┌────总行数─┬─原始大小──┬─压缩大小─┬─压缩率─┐
│ 326819026 │ 77.15 GiB │ 5.75 GiB │ 7 │
└───────────┴───────────┴──────────┴────────┘
1 rows in set. Elapsed: 0.047 sec. Processed 1.04 thousand rows, 520.93 KB (21.95 thousand rows/s.,
11.02 MB/s.)
2.查看数据表容量、行数、压缩率
--在此查询一张临时表的信息
SELECT
table AS `表名`,
sum(rows) AS `总行数`,
formatReadableSize(sum(data_uncompressed_bytes)) AS `原始大小`,
formatReadableSize(sum(data_compressed_bytes)) AS `压缩大小`,
round((sum(data_compressed_bytes) / sum(data_uncompressed_bytes)) * 100, 0) AS `压缩率`
FROM system.parts
WHERE table IN ('temp_1')
GROUP BY table
┌─表名───┬──总行数─┬─原始大小───┬─压缩大小──┬─压缩率─┐
│ temp_1 │ 3127523 │ 838.21 MiB │ 60.04 MiB │ 7 │
└────────┴─────────┴────────────┴───────────┴────────┘
1 rows in set. Elapsed: 0.008 sec.
3.查看数据表分区信息
--查看测试表在19年12月的分区信息
SELECT
partition AS `分区`,
sum(rows) AS `总行数`,
formatReadableSize(sum(data_uncompressed_bytes)) AS `原始大小`,
formatReadableSize(sum(data_compressed_bytes)) AS `压缩大小`,
round((sum(data_compressed_bytes) / sum(data_uncompressed_bytes)) * 100, 0) AS `压缩率`
FROM system.parts
WHERE (database IN ('default')) AND (table IN ('temp_1')) AND (partition LIKE '2019-12-%')
GROUP BY partition
ORDER BY partition ASC
┌─分区───────┬─总行数─┬─原始大小──┬─压缩大小───┬─压缩率─┐
│ 2019-12-01 │ 24 │ 6.17 KiB │ 2.51 KiB │ 41 │
│ 2019-12-02 │ 9215 │ 2.45 MiB │ 209.74 KiB │ 8 │
│ 2019-12-03 │ 17265 │ 4.46 MiB │ 453.78 KiB │ 10 │
│ 2019-12-04 │ 27741 │ 7.34 MiB │ 677.25 KiB │ 9 │
│ 2019-12-05 │ 31500 │ 8.98 MiB │ 469.30 KiB │ 5 │
│ 2019-12-06 │ 157 │ 37.50 KiB │ 4.95 KiB │ 13 │
│ 2019-12-07 │ 110 │ 32.75 KiB │ 3.86 KiB │ 12 │
└────────────┴────────┴───────────┴────────────┴────────┘
7 rows in set. Elapsed: 0.005 sec.
4.查看数据表字段的信息
SELECT
column AS `字段名`,
any(type) AS `类型`,
formatReadableSize(sum(column_data_uncompressed_bytes)) AS `原始大小`,
formatReadableSize(sum(column_data_compressed_bytes)) AS `压缩大小`,
sum(rows) AS `行数`
FROM system.parts_columns
WHERE (database = 'default') AND (table = 'temp_1')
GROUP BY column
ORDER BY column ASC
┌─字段名───────────┬─类型─────┬─原始大小───┬─压缩大小───┬────行数─┐
│ a │ String │ 23.83 MiB │ 134.13 KiB │ 3127523 │
│ b │ String │ 19.02 MiB │ 127.72 KiB │ 3127523 │
│ c │ String │ 5.97 MiB │ 49.09 KiB │ 3127523 │
│ d │ String │ 3.95 MiB │ 532.86 KiB │ 3127523 │
│ e │ String │ 5.17 MiB │ 49.47 KiB │ 3127523 │
│ totalDate │ DateTime │ 11.93 MiB │ 1.26 MiB │ 3127523 │
└──────────────────┴──────────┴────────────┴────────────┴─────────┘
————————————————
5. 查看表的各个指标
select database,
table,
sum(bytes) as size,
sum(rows) as rows,
min(min_date) as min_date,
max(max_date) as max_date,
sum(bytes_on_disk) as bytes_on_disk,
sum(data_uncompressed_bytes) as data_uncompressed_bytes,
sum(data_compressed_bytes) as data_compressed_bytes,
(data_compressed_bytes / data_uncompressed_bytes) * 100 as compress_rate,
max_date - min_date as days,
size / (max_date - min_date) as avgDaySize
from system.parts
where active
and database = 'database'
and table = 'tablename'
group by database, table
结果为:这种结果显示的大小size是字节,我们如何转换为常见的MB和GB呢?
select
database,
table,
formatReadableSize(size) as size,
formatReadableSize(bytes_on_disk) as bytes_on_disk,
formatReadableSize(data_uncompressed_bytes) as data_uncompressed_bytes,
formatReadableSize(data_compressed_bytes) as data_compressed_bytes,
compress_rate,
rows,
days,
formatReadableSize(avgDaySize) as avgDaySize
from
(
select
database,
table,
sum(bytes) as size,
sum(rows) as rows,
min(min_date) as min_date,
max(max_date) as max_date,
sum(bytes_on_disk) as bytes_on_disk,
sum(data_uncompressed_bytes) as data_uncompressed_bytes,
sum(data_compressed_bytes) as data_compressed_bytes,
(data_compressed_bytes / data_uncompressed_bytes) * 100 as compress_rate,
max_date - min_date as days,
size / (max_date - min_date) as avgDaySize
from system.parts
where active
and database = 'database'
and table = 'tablename'
group by
database,
table
)
结果:这就转换为常见的单位了。
上面过程可以看到,最终都用表进行了聚合,为什么会这样呢?
以一个简单的例子来看,我们最常见的是查看表分区,下面来看下不进行聚合的结果:
select partition
from system.parts
where active
and database = 'database'
and table = 'tablename'
结果为:这是因为在CH中,和我们hive表不一样,hive表一个分区只会有一条记录,但CH不是,每个分区分为了不同的marks
因此,我们要实现和hive一样查分区的功能时,要对表进行聚合查看。
6.跟踪分区
SELECT database,
table,
count() AS parts,
uniq(partition) AS partitions,
sum(marks) AS marks,
sum(rows) AS rows,
formatReadableSize(sum(data_compressed_bytes)) AS compressed,
formatReadableSize(sum(data_uncompressed_bytes)) AS uncompressed,
round((sum(data_compressed_bytes) / sum(data_uncompressed_bytes)) * 100.,2) AS percentage
FROM system.parts
WHERE active
and database = 'database'
and table = 'tablename'
GROUP BY database, table
7.检查数据大小
SELECT table,
formatReadableSize(sum(data_compressed_bytes)) AS tc,
formatReadableSize(sum(data_uncompressed_bytes)) AS tu,
round((sum(data_compressed_bytes) / sum(data_uncompressed_bytes)) * 100,2) AS ratio
FROM system.columns
WHERE database = 'database'
and table = 'table'
GROUP BY table
ORDER BY sum(data_compressed_bytes) ASC
参考:https://blog.csdn.net/weixin_39025362/article/details/109051723
https://blog.csdn.net/qq_21383435/article/details/115679147
转载:https://blog.csdn.net/xc_zhou/article/details/128265066
查看评论