小言_互联网的博客

【配电网规划】配电网网架重构、DG位置选择容量配置(Matlab代码实现)

376人阅读  评论(0)

 👨‍🎓个人主页:研学社的博客 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及数据 


💥1 概述

在社会发展的新时期,我国的分布式光伏电源发展十分迅速,提供的电力在近些年的配电网销售电量中占比较大且呈现出逐年上升的趋势。文章分析了分布式光伏发电高渗透区域配电网规划研究的方法.配电网规划包括:配电网网架重构、DG位置选择容量配置。

📚2 运行结果

%% 基本参数

T=12;      % 典型日 8-19h 

% 8-19h 负荷各时段负荷总量
P_load=[828,1001,1105,1105,994,1105,1105,1049,1012,810,699,626];

% 8-19h 光伏各时段出力标幺(by)值
P_PVG=[0.29,0.03,0.51,0.55,0.47,0.46,0.55,0.64,0.22,0.20,0.38,0.03];

Node=23;       % 节点
Line=34;       % 线路

o1 = 1.1198;     %  负荷功率因数角 0.9
o2 = 1.2532;     %  DG功率因素角 0.95

% 网损成本
Line_closs=0.6; 

% 最大弃(abandon,a)光率
a_max_PVG=0.05;

% 单位弃光成本
PVG=0.6; 

% 主网(zw)购电分时单价
zw_buy1_TR=[0.6 0.57 0.45 0.43 0.43 0.58 0.65 0.67 0.68 0.64  0.69 0.63 0.63 0.63 0.62 0.61 0.615 0.635 0.63 0.63 0.615  0.615 0.59 0.505 ];
zw_buy_TR=zw_buy1_TR(8:19);

SLmax=5300;                    % KVA
Umin=0.95*0.95*(12.66)^2;      % 20KV
Umax=1.05*1.05*(12.66)^2;      % 20KV

% P_TRmax=7500;  
P_TRmax=4500;  
P_TRmin=0;          

M=99999;   % 大M法处理非线性项

Model has 408 quadratic constraints
Variable types: 3636 continuous, 40 integer (40 binary)
Coefficient statistics:
  Matrix range     [3e-05, 2e+05]
  QMatrix range    [1e+00, 1e+00]
  Objective range  [4e-05, 7e-01]
  Bounds range     [1e+00, 1e+00]
  RHS range        [6e+00, 1e+05]
Presolve removed 6454 rows and 3475 columns
Presolve time: 0.08s
Presolved: 148 rows, 201 columns, 592 nonzeros
Presolved model has 34 quadratic constraint(s)
Variable types: 201 continuous, 0 integer (0 binary)
Root relaxation presolve time: 0.14s
Root relaxation presolved: 386 rows, 201 columns, 830 nonzeros
Root relaxation presolved model has 34 second-order cone constraints
Root barrier log...

Ordering time: 0.00s

Barrier statistics:
 AA' NZ     : 3.334e+03
 Factor NZ  : 5.145e+03
 Factor Ops : 7.515e+04 (less than 1 second per iteration)
 Threads    : 1

                  Objective                Residual
Iter       Primal          Dual         Primal    Dual     Compl     Time
   0  -1.44100450e+05 -1.94306198e+06  6.22e+04 3.57e-01  2.38e+04     0s
   1  -3.18003635e+04 -1.11128842e+06  1.93e+04 1.55e-04  3.38e+03     0s
   2  -3.32510774e+03 -8.75211027e+04  2.63e+03 1.70e-10  2.59e+02     0s
   3   1.60032580e+03 -1.28160838e+03  3.82e+02 4.46e-13  1.66e+01     0s
   4   1.98895386e+03  1.30534203e+03  2.19e+02 5.13e-13  7.26e+00     0s
   5   3.10026896e+03  2.35888313e+03  1.74e+00 1.70e-13  1.44e+00     0s
   6   3.02078818e+03  2.76863576e+03  6.45e-01 7.23e-14  4.78e-01     0s
   7   2.99412930e+03  2.92633212e+03  1.90e-01 2.33e-14  1.28e-01     0s
   8   2.99001228e+03  2.96918960e+03  6.79e-02 6.44e-15  3.95e-02     0s
   9   2.98881829e+03  2.97887602e+03  3.12e-02 2.84e-15  1.88e-02     0s
  10   2.98808964e+03  2.98325309e+03  1.95e-08 1.23e-15  8.99e-03     0s
  11   2.98733272e+03  2.98563455e+03  1.02e-09 4.50e-16  3.16e-03     0s
  12   2.98712160e+03  2.98620869e+03  8.43e-11 2.65e-16  1.70e-03     0s
  13   2.98706971e+03  2.98684841e+03  2.26e-11 9.85e-17  4.12e-04     0s
  14   2.98705354e+03  2.98702514e+03  2.94e-11 9.16e-15  5.29e-05     0s
  15   2.98704581e+03  2.98704303e+03  1.15e-10 5.27e-11  5.21e-06     0s
  16   2.98704503e+03  2.98704469e+03  2.06e-10 9.10e-12  6.53e-07     0s
  17   2.98704478e+03  2.98704477e+03  2.83e-09 1.61e-13  8.37e-09     0s

Barrier solved model in 17 iterations and 0.21 seconds (0.04 work units)
Optimal objective 2.98704478e+03


Root relaxation: objective 2.987045e+03, 0 iterations, 0.08 seconds (0.00 work units)

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

*    0     0               0    2987.0447775 2987.04478  0.00%     -    0s

Explored 1 nodes (0 simplex iterations) in 0.24 seconds (0.04 work units)
Thread count was 16 (of 16 available processors)

Solution count 1: 2987.04 

Optimal solution found (tolerance 1.00e-04)
Best objective 2.987044777456e+03, best bound 2.987044777456e+03, gap 0.0000%
时间已过 122.083744 秒。

数据:

部分代码:

% 光伏接入节点
PVG_jr=[4,8,11,12,16,20];  

% 各光伏节点接入容量
int_pvg=[435,465,345,489,564,349];

Num_PVG=length(PVG_jr);

P_PVG_yc=sdpvar(Num_PVG,T,'full');   % 光伏预测(yc)出力
P_PVG=sdpvar(Num_PVG,T,'full');

x_pvg=binvar(1,Num_PVG);           % 0-1变量,是否建设光伏

TR_jr=[1];                        % 变压器接入节点 也就是与主网相连节点

Num_TR=length(TR_jr);

P_TR=sdpvar(Num_TR,T,'full');
Q_TR=sdpvar(Num_TR,T,'full');

%% 负荷相关定义

% 各个节点基准(jz)负荷
P_load_jz=[0,188,180,136,184,160,172,164,244,252,180,204,248,160,196,144,172,188,223,145,135,268,193]/4136;

% 负荷曲线 0-24 求8:19
Load_timeine1=[0.78,0.75,0.7,0.68,0.65,0.63,0.7,0.75,0.79,0.90,0.90,0.90,0.90,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.85,0.83,0.80,0.78];
Load_timeine=Load_timeine1(8:19);

for t=1:T
    for j=1:Node
        P_LOAD(j,t)=total_P_LOAD(t)*P_load_jz(j)*Load_timeine(t);
    end
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]姜景芮,何峰,李铮,杨小冬.面向可再生能源并网的配电网规划研究[J].中国设备工程,2022(04):226-227.

[2]何丽娟,贺洁,金鑫.中压配电网规划中供电分区划分方法研究[J].微型电脑应用,2022,38(05):116-119.

🌈4 Matlab代码及数据 


转载:https://blog.csdn.net/weixin_46039719/article/details/127991971
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场