小言_互联网的博客

【PyTorch】Neural Network 神经网络

378人阅读  评论(0)

四、Neural Network 神经网络

参考文档:https://pytorch.org/docs/stable/nn.html

1、Containers - Module

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module

import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        output = input + 1
        return output


tudui = Tudui()
x = torch.tensor(1.0)
output = tudui(x)
print(output)

 
tensor(2.)

2、Convolution Layers - functional.conv2d

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.functional.conv2d.html#torch.nn.functional.conv2d

2.1 stride

import torch
import torch.nn.functional as F

input = torch.tensor([
    [1, 2, 0, 3, 1],
    [0, 1, 2, 3, 1],
    [1, 2, 1, 0, 0],
    [5, 2, 3, 1, 1],
    [2, 1, 0, 1, 1]
])

kernel = torch.tensor([
    [1, 2, 1],
    [0, 1, 0],
    [2, 1, 0]
])

input = torch.reshape(input, (1, 1, 5, 5))  # torch.Size([1, 1, 5, 5])
kernel = torch.reshape(kernel, (1, 1, 3, 3))  # torch.Size([1, 1, 3, 3])

output1 = F.conv2d(input, kernel, stride=1)
print(output1)

output2 = F.conv2d(input, kernel, stride=2)
print(output2)

 
tensor([[[[10, 12, 12],
          [18, 16, 16],
          [13,  9,  3]]]])
tensor([[[[10, 12],
          [13,  3]]]])

2.2 padding

import torch
import torch.nn.functional as F

input = torch.tensor([
    [1, 2, 0, 3, 1],
    [0, 1, 2, 3, 1],
    [1, 2, 1, 0, 0],
    [5, 2, 3, 1, 1],
    [2, 1, 0, 1, 1]
])

kernel = torch.tensor([
    [1, 2, 1],
    [0, 1, 0],
    [2, 1, 0]
])

input = torch.reshape(input, (1, 1, 5, 5))  # torch.Size([1, 1, 5, 5])
kernel = torch.reshape(kernel, (1, 1, 3, 3))  # torch.Size([1, 1, 3, 3])

output1 = F.conv2d(input, kernel, stride=1, padding=1)
print(output1)

output2 = F.conv2d(input, kernel, stride=2, padding=1)
print(output2)

 
tensor([[[[ 1,  3,  4, 10,  8],
          [ 5, 10, 12, 12,  6],
          [ 7, 18, 16, 16,  8],
          [11, 13,  9,  3,  4],
          [14, 13,  9,  7,  4]]]])
tensor([[[[ 1,  4,  8],
          [ 7, 16,  8],
          [14,  9,  4]]]])

3、Convolution Layers - Conv2d

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

动画实现:https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

3.1 in_channels out_channels

import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=64)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    def forward(self, x):
        x = self.conv1(x)
        return x


tudui = Tudui()

for data in dataloader:
    imgs, targets = data
    output = tudui(imgs)
    print(imgs.shape)
    print(output.shape)

 
Files already downloaded and verified
torch.Size([64, 3, 32, 32]) # in_channels=3
torch.Size([64, 6, 30, 30]) # out_channels=6 卷积之后 32 -> 30
...

TensorBoard展示:

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=64)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    def forward(self, x):
        x = self.conv1(x)
        return x


tudui = Tudui()

writer = SummaryWriter("logs")

step = 0
for data in dataloader:
    imgs, targets = data
    output = tudui(imgs)
    print(imgs.shape)  # torch.Size([64, 3, 32, 32])
    print(output.shape)  # torch.Size([64, 6, 30, 30])

    writer.add_images("input", imgs, step)

    output = torch.reshape(output, (-1, 3, 30, 30))  # -> [xxx, 3, 30, 30]
    writer.add_images("output", output, step)

    print(output.shape)  # torch.Size([128, 3, 30, 30])

    step += 1

writer.close()

 

4、Pooling layers - MaxPool2d

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d

4.1 ceil_mode

import torch
from torch import nn
from torch.nn import MaxPool2d

input = torch.Tensor([
    [1, 2, 0, 3, 1],
    [0, 1, 2, 3, 1],
    [1, 2, 1, 0, 0],
    [5, 2, 3, 1, 1],
    [2, 1, 0, 1, 1],
])

input = torch.reshape(input, (-1, 1, 5, 5))  # torch.Size([1, 1, 5, 5])


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


tudui = Tudui()
output = tudui(input)
print(output)

 
tensor([[[[2., 3.],
          [5., 1.]]]])

4.2 TensorBoard

import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=64)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=False)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


tudui = Tudui()

writer = SummaryWriter("../logs")
step = 0
for data in dataloader:
    imgs, targets = data
    writer.add_images("input", imgs, step)
    output = tudui(imgs)
    writer.add_images("output", output, step)
    step += 1

writer.close()

 

5、Non-linear Activations

5.1 ReLU

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html#torch.nn.ReLU

inplace说明:

①input = -1 – ReLU(input, inplace = True) – input = 0

②input = -1 – output = ReLU(input, inplace = True) – input = -1 output = 0

import torch
from torch import nn
from torch.nn import ReLU

input = torch.Tensor([[1, -0.5], [-1, 3]])  # torch.Size([2, 2])

input = torch.reshape(input, (-1, 1, 2, 2))  # torch.Size([1, 1, 2, 2])


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.relu1 = ReLU()

    def forward(self, input):
        output = self.relu1(input)
        return output


tudui = Tudui()
output = tudui(input)
print(output)  # torch.Size([1, 1, 2, 2])

 
tensor([[[[1., 0.],
          [0., 3.]]]])

5.2 Sigmoid

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html#torch.nn.Sigmoid

import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=64)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.sigmoid1 = Sigmoid()

    def forward(self, input):
        output = self.sigmoid1(input)
        return output


tudui = Tudui()

writer = SummaryWriter("../logs")

step = 0
for data in dataloader:
    imgs, targets = data
    writer.add_images("input", imgs, global_step=step)
    output = tudui(imgs)
    writer.add_images("output", output, global_step=step)
    step += 1

writer.close()

 

6、Linear Layers - Linear

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear

import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=64)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.liner1 = Linear(in_features=196608, out_features=10)

    def forward(self, input):
        output = self.liner1(input)
        return output


tudui = Tudui()

for data in dataloader:
    imgs, targets = data
    print(imgs.shape)  # torch.Size([64, 3, 32, 32])

    output = torch.reshape(imgs, (1, 1, 1, -1))
    print(output.shape)  # torch.Size([1, 1, 1, 196608])
    
    output = tudui(output)
    print(output.shape)  # torch.Size([1, 1, 1, 10])

 
Files already downloaded and verified
torch.Size([64, 3, 32, 32])
torch.Size([1, 1, 1, 196608])
torch.Size([1, 1, 1, 10])
...

6.1 flatten

参考文档:https://pytorch.org/docs/stable/generated/torch.flatten.html?highlight=flatten#torch.flatten

output = torch.reshape(imgs, (1, 1, 1, -1))
print(output.shape)  # torch.Size([1, 1, 1, 196608])

改为

output = torch.flatten(imgs)
print(output.shape)  # torch.Size([196608]) output --> torch.Size([10])

7、CIFAR 10 Model and Sequential

CIFAR 10:https://www.cs.toronto.edu/~kriz/cifar.html

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2)
        self.maxpool1 = MaxPool2d(kernel_size=2)
        self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2)
        self.maxpool2 = MaxPool2d(kernel_size=2)
        self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2)
        self.maxpool3 = MaxPool2d(kernel_size=2)
        self.flatten = Flatten()
        self.linear1 = Linear(1024, 64)
        self.linear2 = Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x


tudui = Tudui()
print(tudui)
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape)

 
Tudui(
  (conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
  (maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear1): Linear(in_features=1024, out_features=64, bias=True)
  (linear2): Linear(in_features=64, out_features=10, bias=True)
)
torch.Size([64, 10])

Sequential:https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


tudui = Tudui()
print(tudui)
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape)

writer = SummaryWriter("../logs")
writer.add_graph(tudui, input)
writer.close()

 
Tudui(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
torch.Size([64, 10])

8、Loss Functions

8.1 L1Loss

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html#torch.nn.L1Loss

import torch
from torch.nn import L1Loss

input = torch.tensor([1, 2, 3], dtype=torch.float32)  # torch.Size([3])
target = torch.tensor([1, 2, 5], dtype=torch.float32)  # torch.Size([3])

input = torch.reshape(input, (1, 1, 1, 3))  # torch.Size([1, 1, 1, 3])
target = torch.reshape(target, (1, 1, 1, 3))  # torch.Size([1, 1, 1, 3])

loss1 = L1Loss(reduction='mean')  # 默认为mean
result = loss1(input, target)
print(result)

loss2 = L1Loss(reduction='sum')  # sum
result = loss2(input, target)
print(result)

 
tensor(0.6667)
tensor(2.)

8.2 MSELoss

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELoss

import torch
from torch.nn import MSELoss

input = torch.tensor([1, 2, 3], dtype=torch.float32)
target = torch.tensor([1, 2, 5], dtype=torch.float32)

input = torch.reshape(input, (1, 1, 1, 3))
target = torch.reshape(target, (1, 1, 1, 3))

loss = MSELoss()
result = loss(input, target)
print(result)
tensor(1.3333)

8.3 CrossEntropyLoss

参考文档:https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss

计算公式:

import torch
from torch.nn import CrossEntropyLoss

input = torch.tensor([0.1, 0.2, 0.3])
target = torch.tensor([1])

input = torch.reshape(input, (1, 3))

cross = CrossEntropyLoss()
result = cross(input, target)
print(result)
tensor(1.1019)

8.4 Sequential

import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=1)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


tudui = Tudui()

for data in dataloader:
    imgs, targets = data
    output = tudui(imgs)
    print(output)
    print(targets)

 
Files already downloaded and verified
tensor([[-0.0715,  0.0221, -0.0562, -0.0901,  0.0627, -0.0606,  0.0137,  0.0783,
         -0.0951, -0.1070]], grad_fn=<AddmmBackward0>)
tensor([3])
tensor([[-0.0715,  0.0304, -0.0729, -0.0767,  0.0554, -0.0834, -0.0089,  0.0624,
         -0.0777, -0.0848]], grad_fn=<AddmmBackward0>)
tensor([8])
...

加入Loss Functions:

import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear, CrossEntropyLoss
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=1)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


loss = CrossEntropyLoss()

tudui = Tudui()

for data in dataloader:
    imgs, targets = data
    output = tudui(imgs)
    result_loss = loss(output, targets)
    print(result_loss)

 
Files already downloaded and verified
tensor(2.3437, grad_fn=<NllLossBackward0>)
tensor(2.3600, grad_fn=<NllLossBackward0>)
tensor(2.3680, grad_fn=<NllLossBackward0>)
...

8.5 backward

import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear, CrossEntropyLoss
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=1)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


loss = CrossEntropyLoss()

tudui = Tudui()

for data in dataloader:
    imgs, targets = data
    output = tudui(imgs)
    result_loss = loss(output, targets)

    result_loss.backward()  # 反向传播
    print("OK")

 


转载:https://blog.csdn.net/m0_70885101/article/details/127947664
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场