测试使用:【Win10+cuda11.0+cudnn8.2.1+TensorRT8.2.5.1】 关于安装
一、模型转换 onnx2trt
方法1:使用wang-xinyu/tensorrtx部署yolov5方法:https://wangsp.blog.csdn.net/article/details/121718501
方法2:使用tensorRT转成engine
方法3:使用C++ onnx_tensorrt将onnx转为trt 的推理engine 参考 【python 方法参考】
方法4:直接使用TensorRT部署onnx【参考】
- 使用TensorRT部署pytorch模型(c++推理)【参考】
- TensorRT-pytorch权重文件转engine【参考】
- pth->onnx->下载好TensorRT库, 进入~/samples/trtexec, 运行make,生成.engine->python run engine 【参考】 【参考2】
测试,执行:
二、配置环境变量
################ TenorRT 包含目录 ######################
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\include;
D:\opencv_build\install\include;D:\opencv_build\install\include\opencv2;
D:\Downloads\cuda_cudnn_TensorRT8\TensorRT-8.2.5.1.Windows10.x86_64.cuda-11.4.cudnn8.2\TensorRT-8.2.5.1\samples\common
#################### TenorRT 库目录 ############################
D:\opencv_build\install\x64\vc16\lib\*.lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\lib\x64\*.lib
三、调用推理
使用pycuda【下载】地址。模型训练代码来自 https://github.com/bubbliiiing
安装pycuda 对应python的版本:pycuda-2020.1+cuda101-cp38-cp38-win_amd64.whl
安装tensorrt对应python的版本:tensorrt-8.2.5.1-cp38-none-win_amd64.whl(来自TensorRT-8.2.5.1.Windows10.x86_64.cuda-11.4.cudnn8.2\TensorRT-8.2.5.1\python目录下)
TensorRT调用步骤
- 创建IBuilder的指针builder
- 设置推理的显存大小
- 设置推理的模式,float或者int
- 利用builder创建ICudaEngine的实例engine
- 由engine创建上下文context
- 利用context进行推理,得到结果
- 释放显存空间
python示例代码
# --*-- coding:utf-8 --*--
import pycuda.autoinit
import pycuda.driver as cuda
import tensorrt as trt
import torch
import time
from PIL import Image
import cv2, os
import torchvision
import numpy as np
filename = '/home/img.png'
max_batch_size = 1
onnx_model_path = "./resnet18.onnx"
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
def get_img_np_nchw(filename):
image = cv2.imread(filename)
image_cv = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_cv = cv2.resize(image_cv, (224, 224))
miu = np.array([0.485, 0.456, 0.406]).reshape(3, 1, 1)
std = np.array([0.229, 0.224, 0.225]).reshape(3, 1, 1)
img_np = np.array(image_cv, dtype=np.float) / 255.
img_np = img_np.transpose((2, 0, 1))
img_np -= miu
img_np /= std
img_np_nchw = img_np[np.newaxis]
img_np_nchw = np.tile(img_np_nchw, (max_batch_size, 1, 1, 1))
return img_np_nchw
class HostDeviceMem(object):
def __init__(self, host_mem, device_mem):
"""
host_mem: cpu memory
device_mem: gpu memory
"""
self.host = host_mem
self.device = device_mem
def __str__(self):
return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
def __repr__(self):
return self.__str__()
def allocate_buffers(engine):
inputs, outputs, bindings = [], [], []
stream = cuda.Stream()
for binding in engine:
# print(binding) # 绑定的输入输出
# print(engine.get_binding_shape(binding)) # get_binding_shape 是变量的大小
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
# volume 计算可迭代变量的空间,指元素个数
# size = trt.volume(engine.get_binding_shape(binding)) # 如果采用固定bs的onnx,则采用该句
dtype = trt.nptype(engine.get_binding_dtype(binding))
# get_binding_dtype 获得binding的数据类型
# nptype等价于numpy中的dtype,即数据类型
# allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype) # 创建锁业内存
device_mem = cuda.mem_alloc(host_mem.nbytes) # cuda分配空间
# print(int(device_mem)) # binding在计算图中的缓冲地址
bindings.append(int(device_mem))
# append to the appropriate list
if engine.binding_is_input(binding):
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
return inputs, outputs, bindings, stream
def get_engine(max_batch_size=1, onnx_file_path="", engine_file_path="", fp16_mode=False, save_engine=False):
"""
params max_batch_size: 预先指定大小好分配显存
params onnx_file_path: onnx文件路径
params engine_file_path: 待保存的序列化的引擎文件路径
params fp16_mode: 是否采用FP16
params save_engine: 是否保存引擎
returns: ICudaEngine
"""
# 如果已经存在序列化之后的引擎,则直接反序列化得到cudaEngine
if os.path.exists(engine_file_path):
print("Reading engine from file: {}".format(engine_file_path))
with open(engine_file_path, 'rb') as f, \
trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read()) # 反序列化
else: # 由onnx创建cudaEngine
# 使用logger创建一个builder
# builder创建一个计算图 INetworkDefinition
explicit_batch = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
# In TensorRT 7.0, the ONNX parser only supports full-dimensions mode, meaning that your network definition must be created with the explicitBatch flag set. For more information, see Working With Dynamic Shapes.
with trt.Builder(TRT_LOGGER) as builder, \
builder.create_network(explicit_batch) as network, \
trt.OnnxParser(network, TRT_LOGGER) as parser: # 使用onnx的解析器绑定计算图,后续将通过解析填充计算图
builder.max_workspace_size = 1 << 30 # 预先分配的工作空间大小,即ICudaEngine执行时GPU最大需要的空间
builder.max_batch_size = max_batch_size # 执行时最大可以使用的batchsize
builder.fp16_mode = fp16_mode
# 解析onnx文件,填充计算图
if not os.path.exists(onnx_file_path):
quit("ONNX file {} not found!".format(onnx_file_path))
print('loading onnx file from path {} ...'.format(onnx_file_path))
with open(onnx_file_path, 'rb') as model: # 二值化的网络结果和参数
print("Begining onnx file parsing")
parser.parse(model.read()) # 解析onnx文件
# parser.parse_from_file(onnx_file_path) # parser还有一个从文件解析onnx的方法
print("Completed parsing of onnx file")
# 填充计算图完成后,则使用builder从计算图中创建CudaEngine
print("Building an engine from file{}' this may take a while...".format(onnx_file_path))
#################
print(network.get_layer(network.num_layers - 1).get_output(0).shape)
# network.mark_output(network.get_layer(network.num_layers -1).get_output(0))
engine = builder.build_cuda_engine(network) # 注意,这里的network是INetworkDefinition类型,即填充后的计算图
print("Completed creating Engine")
if save_engine: # 保存engine供以后直接反序列化使用
with open(engine_file_path, 'wb') as f:
f.write(engine.serialize()) # 序列化
return engine
def do_inference(context, bindings, inputs, outputs, stream, batch_size=1):
# Transfer data from CPU to the GPU.
[cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
# htod: host to device 将数据由cpu复制到gpu device
# Run inference.
context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
# 当创建network时显式指定了batchsize, 则使用execute_async_v2, 否则使用execute_async
# Transfer predictions back from the GPU.
[cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
# gpu to cpu
# Synchronize the stream
stream.synchronize()
# Return only the host outputs.
return [out.host for out in outputs]
def postprocess_the_outputs(h_outputs, shape_of_output):
h_outputs = h_outputs.reshape(*shape_of_output)
return h_outputs
img_np_nchw = get_img_np_nchw(filename).astype(np.float32)
# These two modes are depend on hardwares
fp16_mode = False
trt_engine_path = "./model_fp16_{}.trt".format(fp16_mode)
# Build an cudaEngine
engine = get_engine(max_batch_size, onnx_model_path, trt_engine_path, fp16_mode)
# 创建CudaEngine之后,需要将该引擎应用到不同的卡上配置执行环境
context = engine.create_execution_context()
inputs, outputs, bindings, stream = allocate_buffers(engine) # input, output: host # bindings
# Do inference
shape_of_output = (max_batch_size, 1000)
# Load data to the buffer
inputs[0].host = img_np_nchw.reshape(-1)
# inputs[1].host = ... for multiple input
t1 = time.time()
trt_outputs = do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream) # numpy data
t2 = time.time()
feat = postprocess_the_outputs(trt_outputs[0], shape_of_output)
print('TensorRT ok')
model = torchvision.models.resnet18(pretrained=True).cuda()
resnet_model = model.eval()
input_for_torch = torch.from_numpy(img_np_nchw).cuda()
t3 = time.time()
feat_2 = resnet_model(input_for_torch)
t4 = time.time()
feat_2 = feat_2.cpu().data.numpy()
print('Pytorch ok!')
mse = np.mean((feat - feat_2) ** 2)
print("Inference time with the TensorRT engine: {}".format(t2 - t1))
print("Inference time with the PyTorch model: {}".format(t4 - t3))
print('MSE Error = {}'.format(mse))
print('All completed!')
C++ 代码示例
待续!
编译添加预处理:_CRT_SECURE_NO_WARNINGS
转载:https://blog.csdn.net/wsp_1138886114/article/details/127836415
查看评论