小言_互联网的博客

论文笔记系列:轻量级网络(一)-- RepVGG

302人阅读  评论(0)

 ✨写在前面:强烈推荐给大家一个优秀的人工智能学习网站,内容包括人工智能基础、机器学习、深度学习神经网络等,详细介绍各部分概念及实战教程,通俗易懂,非常适合人工智能领域初学者及研究者学习。➡️点击跳转到网站


RepVGG笔记

论文名称:RepVGG: Making VGG-style ConvNets Great Again
论文下载地址:https://arxiv.org/abs/2101.03697

参考代码:GitHub - DingXiaoH/RepVGG: RepVGG: Making VGG-style ConvNets Great Again

RepVGG概念介绍

  • RepVGG是一种简单的VGG式结构,大量使用3x3卷积,BN层,Relu激活函数,利用重参数化提升性能,准确率直逼其他SOTA网络,特点是训练时使用多分支网络,推理时融合多分支为单分支。主要解决原始VGG网络模型较大,不便于部署及性能较差提出VGG升级版本。 
  • 论文提出一种简单高效的卷积神经网络,该模型的推理结构类似于V G G {\rm VGG}VGG,训练模型使用多分支结构。通过结构再参数化技术实现训练结构和推理结构的解耦,得到模型RepVGG。

 RepVGG主要思路

(1)在VGG网络Block块中加入Identity和残差分支,相当于ResNet网络精华应用到VGG网络中;

(2)模型推理阶段,通过Op融合策略将所有的网络层都转换为Conv3*3,便于网络部署和加速。

RepVGG模型

1.主要架构

RepVGG模型的整体结构:将20多层3x3卷积堆起来,分成5个stage,每个stage的第一层是stride=2的降采样,每个卷积层用ReLU作为激活函数

RepVGG模型的详细结构:RepVGG-A的5个stage分别有[1, 2, 4, 14, 1]层,RepVGG-B的5个stage分别有[1, 4, 6, 16, 1]层,宽度是[64,128, 256, 512]的若干倍。

2.RepVGG Block构造

训练时,为每一个3x3卷积层添加平行的1x1卷积分支恒等映射分支,构成一个RepVGG Block。借鉴ResNet的做法,区别在于ResNet是每隔两层或三层加一分支,RepVGG Block是每层都加。

部署时,我们将1x1卷积分支和恒等映射分支以及3x3卷积融合成一个3x3卷积达到单路结构的目的。

2.3 RepVGG特点

2.3.1更快的速度

现有的计算库(如CuDNN,Intel MKL)和硬件针对3x3卷积有深度的优化,相比其他卷积核,3x3卷积计算密度更高,更加有效

2.3.2更节省内存

以残差块结构为例子,它有2个分支,其中主分支经过卷积层,假设前后张量维度相同,我们认为是一份显存消耗,另外一个旁路分支需要保存初始的输入结果,同样也是一份显存消耗,这样在运行的时候是占用了两份显存,直到最后一步将两个分支结果Add,显存才恢复成一份。而Plain结构只有一个主分支,所以其显存占用一直是一份。RepVGG主体部分只有一种算子:3x3卷积接ReLU。在设计专用芯片时,给定芯片尺寸或造价,我们可以集成海量的3x3卷积-ReLU计算单元来达到很高的效率。单路架构省内存的特性也可以帮我们少做存储单元.

2.3.3更加灵活

多分支结构会引入网络结构的约束,比如Resnet的残差结构要求输入和卷积出来的张量维度要一致(这样才能相加),这种约束导致网络不易延伸拓展,也一定程度限制了通道剪枝。对应的单路结构就比较友好,剪枝后也能得到很好的加速比。

方法论:多分支融合

3x3卷积和1x1卷积融合

假设输入是5x5,stride=1

1x1卷积前后特征图大小不变

3x3卷积在原特征图补零,卷积前后特征图大小不变

将1x1卷积核加在3x3卷积核中间,就能完成卷积分支融合

融合示例图如下:

identity分支等效特殊权重卷积层

我们试想一下,输入与输出要相等,假设输入输出都是三通道

即每一个卷积核的通道数量,必须要求与输入通道数量一致,因为要对每一个通道的像素值要进行卷积运算,所以每一个卷积核的通道数量必须要与输入通道数量保持一致。

那么要保持原有三通道数据各权重应该如何初始化呢?
一个卷积核的尺寸为3x3x3,将对应通道的权重设为1其他为零,就能完好的保证输出原有值。

卷积+BN融合

在将identity分支1x1卷积融合到3x3卷积后,我们将BN层融到卷积中去

Batch-Normalization (BN)是一种让神经网络训练更快、更稳定的方法(faster and more stable)。它计算每个mini-batch的均值和方差,并将其拉回到均值为0方差为1的标准正态分布。BN层通常在nonlinear function的前面/后面使用。

RepVGG的再参数化:

 经过上述转换,我们可以得到一个3×3卷积,两个1 × 1 卷积和三个表示偏置的向量。然后,将三个偏置向量相加得到最后的偏置参数,然后使用零填充将1 × 1 卷积填充为3 × 3 大小,最后将所有3 × 3 大小的卷积相加,得到最后的卷积参数。

 

Architectural Specification

                                                        上图中的a和b 表示通道的缩放系数。

实验部分

                                                基于不同a和b得到的RepVGG.

 RepVGG for ImageNet Classification

Structural Re-parameterization is the Key

                                                                Ablation Studies

                                                Comparison with variants and baselines

PyTorch实现RepVGG

RepVGG模块构建:


  
  1. class RepVGGBlock(nn.Module):
  2. def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', deploy=False):
  3. super(RepVGGBlock, self).__init__()
  4. self.deploy = deploy
  5. self.groups = groups
  6. self.in_channels = in_channels
  7. assert kernel_size == 3
  8. assert padding == 1
  9. padding_11 = padding - kernel_size // 2
  10. self.nonlinearity = nn.ReLU()
  11. # 根据deploy决定构建训练模型还是推理模型
  12. if deploy:
  13. # 推理时仅有一个3x3卷积
  14. self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias= True, padding_mode=padding_mode)
  15. else:
  16. # 训练时包含一个恒等连接、一个3x3卷积核一个1x1卷积
  17. self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None
  18. self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups)
  19. self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size= 1, stride=stride, padding=padding_11, groups=groups)
  20. print( 'RepVGG Block, identity = ', self.rbr_identity)
  21. def forward( self, inputs):
  22. if hasattr(self, 'rbr_reparam'):
  23. return self.nonlinearity(self.rbr_reparam(inputs))
  24. if self.rbr_identity is None:
  25. id_out = 0
  26. else:
  27. id_out = self.rbr_identity(inputs)
  28. return self.nonlinearity(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
  29. # 核和偏置的转换,具体实现在_fuse_bn_tensor函数
  30. def get_equivalent_kernel_bias( self):
  31. kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
  32. kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
  33. kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
  34. # 核和偏置合并
  35. return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
  36. def _pad_1x1_to_3x3_tensor( self, kernel1x1):
  37. if kernel1x1 is None:
  38. return 0
  39. else:
  40. return torch.nn.functional.pad(kernel1x1, [ 1, 1, 1, 1])
  41. def _fuse_bn_tensor( self, branch):
  42. if branch is None:
  43. return 0, 0
  44. if isinstance(branch, nn.Sequential):
  45. # 卷积层权重
  46. kernel = branch.conv.weight
  47. # μ
  48. running_mean = branch.bn.running_mean
  49. # σ
  50. running_var = branch.bn.running_var
  51. # BN层权重
  52. gamma = branch.bn.weight
  53. # BN层偏置
  54. beta = branch.bn.bias
  55. # BN层防止除零的参数
  56. eps = branch.bn.eps
  57. else:
  58. assert isinstance(branch, nn.BatchNorm2d)
  59. if not hasattr(self, 'id_tensor'):
  60. input_dim = self.in_channels // self.groups
  61. kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
  62. for i in range(self.in_channels):
  63. kernel_value[i, i % input_dim, 1, 1] = 1
  64. self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
  65. kernel = self.id_tensor
  66. running_mean = branch.running_mean
  67. running_var = branch.running_var
  68. gamma = branch.weight
  69. beta = branch.bias
  70. eps = branch.eps
  71. std = (running_var + eps).sqrt()
  72. t = (gamma / std).reshape(- 1, 1, 1, 1)
  73. # 式(3),返回 W'和 b'
  74. return kernel * t, beta - running_mean * gamma / std
  75. def repvgg_convert( self):
  76. kernel, bias = self.get_equivalent_kernel_bias()
  77. return kernel.detach().cpu().numpy(), bias.detach().cpu().numpy(),

RepVGG主体部分构建:

 


  
  1. class RepVGG(nn.Module):
  2. def __init__( self, num_blocks, num_classes=1000, width_multiplier=None, override_groups_map=None, deploy=False):
  3. super(RepVGG, self).__init__()
  4. assert len(width_multiplier) == 4
  5. self.deploy = deploy
  6. self.override_groups_map = override_groups_map or dict()
  7. assert 0 not in self.override_groups_map
  8. self.in_planes = min( 64, int( 64 * width_multiplier[ 0]))
  9. # 构建RepVGG的各阶段
  10. self.stage0 = RepVGGBlock(in_channels= 3, out_channels=self.in_planes, kernel_size= 3, stride= 2, padding= 1, deploy=self.deploy)
  11. self.cur_layer_idx = 1
  12. self.stage1 = self._make_stage( int( 64 * width_multiplier[ 0]), num_blocks[ 0], stride= 2)
  13. self.stage2 = self._make_stage( int( 128 * width_multiplier[ 1]), num_blocks[ 1], stride= 2)
  14. self.stage3 = self._make_stage( int( 256 * width_multiplier[ 2]), num_blocks[ 2], stride= 2)
  15. self.stage4 = self._make_stage( int( 512 * width_multiplier[ 3]), num_blocks[ 3], stride= 2)
  16. self.gap = nn.AdaptiveAvgPool2d(output_size= 1)
  17. # 用于分类的全连接层
  18. self.linear = nn.Linear( int( 512 * width_multiplier[ 3]), num_classes)
  19. def _make_stage( self, planes, num_blocks, stride):
  20. strides = [stride] + [ 1]*(num_blocks- 1)
  21. blocks = []
  22. for stride in strides:
  23. cur_groups = self.override_groups_map.get(self.cur_layer_idx, 1)
  24. blocks.append(RepVGGBlock(in_channels=self.in_planes, out_channels=planes, kernel_size= 3,
  25. stride=stride, padding= 1, groups=cur_groups, deploy=self.deploy))
  26. self.in_planes = planes
  27. self.cur_layer_idx += 1
  28. return nn.Sequential(*blocks)
  29. def forward( self, x):
  30. out = self.stage0(x)
  31. out = self.stage1(out)
  32. out = self.stage2(out)
  33. out = self.stage3(out)
  34. out = self.stage4(out)
  35. out = self.gap(out)
  36. out = out.view(out.size( 0), - 1)
  37. out = self.linear(out)
  38. return out

RepVGG构建用于分类和分割等任务的模型,并返回推理模型:


  
  1. def whole_model_convert( train_model:torch.nn.Module, deploy_model:torch.nn.Module, save_path=None):
  2. all_weights = {}
  3. for name, module in train_model.named_modules():
  4. # 条件语句判断不同形式的层
  5. if hasattr(module, 'repvgg_convert'):
  6. # 获得转换后的卷积层权重和偏置
  7. kernel, bias = module.repvgg_convert()
  8. # 加载权重
  9. all_weights[name + '.rbr_reparam.weight'] = kernel
  10. all_weights[name + '.rbr_reparam.bias'] = bias
  11. print( 'convert RepVGG block')
  12. else:
  13. for p_name, p_tensor in module.named_parameters():
  14. full_name = name + '.' + p_name
  15. if full_name not in all_weights:
  16. all_weights[full_name] = p_tensor.detach().cpu().numpy()
  17. for p_name, p_tensor in module.named_buffers():
  18. full_name = name + '.' + p_name
  19. if full_name not in all_weights:
  20. all_weights[full_name] = p_tensor.cpu().numpy()
  21. # 加载权重
  22. deploy_model.load_state_dict(all_weights)
  23. if save_path is not None:
  24. torch.save(deploy_model.state_dict(), save_path)
  25. return deploy_model

 调用


  
  1. # 1. 构建基于RepVGG的任务模型,如这里构建PSPNet
  2. # 调用流程如下:
  3. ###################### 1 ######################
  4. train_backbone = create_RepVGG_B2(deploy= False)
  5. train_backbone.load_state_dict(torch.load( 'RepVGG-B2-train.pth'))
  6. train_pspnet = build_pspnet(backbone=train_backbone)
  7. segmentation_train(train_pspnet)
  8. ###################### 2 ######################
  9. # 2. 构建PSPNet的推理模型
  10. deploy_backbone = create_RepVGG_B2(deploy= True)
  11. deploy_pspnet = build_pspnet(backbone=deploy_backbone)
  12. whole_model_convert(train_pspnet, deploy_pspnet)
  13. segmentation_test(deploy_pspnet)

 RepVGG转换成推理模型:


  
  1. def repvgg_model_convert( model:torch.nn.Module, build_func, save_path=None):
  2. converted_weights = {}
  3. for name, module in model.named_modules():
  4. if hasattr(module, 'repvgg_convert'):
  5. kernel, bias = module.repvgg_convert()
  6. converted_weights[name + '.rbr_reparam.weight'] = kernel
  7. converted_weights[name + '.rbr_reparam.bias'] = bias
  8. elif isinstance(module, torch.nn.Linear):
  9. converted_weights[name + '.weight'] = module.weight.detach().cpu().numpy()
  10. converted_weights[name + '.bias'] = module.bias.detach().cpu().numpy()
  11. del model
  12. deploy_model = build_func(deploy= True)
  13. for name, param in deploy_model.named_parameters():
  14. print( 'deploy param: ', name, param.size(), np.mean(converted_weights[name]))
  15. param.data = torch.from_numpy(converted_weights[name]). float()
  16. if save_path is not None:
  17. torch.save(deploy_model.state_dict(), save_path)
  18. return deploy_model

调用


  
  1. # 构建模型
  2. train_model = create_RepVGG_A0(deploy= False)
  3. # 训练模型
  4. train train_model
  5. # 转换模型
  6. deploy_model = repvgg_convert(train_model, create_RepVGG_A0, save_path= 'repvgg_deploy.pth')

参考文章与资料推荐: 

RepVGG网络简介(强推)

论文阅读 | 轻量级网络之RepVGG_zhangts20的博客

图解RepVGG - 知乎 (zhihu.com)

RepVGG 论文详解 - 知乎 (zhihu.com)

RepVGG:极简架构,SOTA性能,让VGG式模型再次伟大(CVPR-2021)


转载:https://blog.csdn.net/qq_36816848/article/details/127441840
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场