小言_互联网的博客

C++ 智能指针

411人阅读  评论(0)

C++STL共提供了四个智能指针: auto_ptr, unique_ptr,shared_ptr, weak_ptr 其中C++11只支持后三个,C++98支持所有四个。

auto_ptr

auto_ptr采用所有权模式,下面有一个例子:

auto_ptr<string> p1 (new string ("I reigned lonely as a cloud.")); 
auto_ptr<string> p2; 
p2 = p1; //auto_ptr不会报错.

当程序运行时访问p1将会报错,因为所有权从p1转让给了p2,此时p2不再引用该字符串从而变成空指针。

故auto_ptr的缺点是:存在潜在的内存崩溃问题!

unique_ptr

unique_ptr用于替换auto_ptr,其采用所有权模式,并实现了独占式拥有或严格拥有概念,保证同一时间内只有一个智能指针可以指向该对象,它对于避免资源泄露(例如“以new创建对象后因为发生异常而忘记调用delete”)特别有用,还是上面那个例子:

unique_ptr<string> p3 (new string ("auto"));   //#4
unique_ptr<string> p4;                       //#5
p4 = p3;//此时会报错!!

编译器认为p4=p3非法,避免了p3不再指向有效数据的问题。尝试复制p3时会编译期出错,而auto_ptr能通过编译期从而在运行期埋下出错的隐患。因此,unique_ptr比auto_ptr更安全。

另外unique_ptr还有更聪明的地方:当程序试图将一个 unique_ptr 赋值给另一个时,如果源 unique_ptr 是个临时右值,编译器允许这么做;如果源 unique_ptr 将存在一段时间,编译器将禁止这么做,比如:

unique_ptr<string> pu1(new string ("hello world")); 
unique_ptr<string> pu2; 
pu2 = pu1;                                      // #1 不允许
unique_ptr<string> pu3; 
pu3 = unique_ptr<string>(new string ("You"));   // #2 允许

其中#1留下悬挂的unique_ptr(pu1),这可能导致危害。而#2不会留下悬挂的unique_ptr,因为它调用 unique_ptr 的构造函数,该构造函数创建的临时对象在其所有权让给 pu3 后就会被销毁。这种随情况而已的行为表明,unique_ptr 优于允许两种赋值的auto_ptr 。

:如果确实想执行类似与#1的操作,要安全的重用这种指针,可给它赋新值。C++有一个标准库函数std::move(),让你能够将一个unique_ptr赋给另一个。尽管转移所有权后 还是有可能出现原有指针调用(调用就崩溃)的情况。但是这个语法能强调你是在转移所有权,让你清晰的知道自己在做什么,从而不乱调用原有指针。例如:

unique_ptr<string> ps1, ps2;
ps1 = demo("hello");
ps2 = move(ps1);
ps1 = demo("alexia");
cout << *ps2 << *ps1 << endl;

(额外:boost库的boost::scoped_ptr也是一个独占性智能指针,但是它不允许转移所有权,从始而终都只对一个资源负责,它更安全谨慎,但是应用的范围也更狭窄。)

shared_ptr

shared_ptr实现共享式拥有概念。多个智能指针可以指向相同对象,该对象和其相关资源会在“最后一个引用被销毁”时候释放。从名字share就可以看出了资源可以被多个指针共享,它使用计数机制来表明资源被几个指针共享。可以通过成员函数use_count()来查看资源的所有者个数。除了可以通过new来构造,还可以通过传入auto_ptr, unique_ptr,weak_ptr来构造。当我们调用release()时,当前指针会释放资源所有权,计数减一。当计数等于0时,资源会被释放。

shared_ptr 是为了解决 auto_ptr 在对象所有权上的局限性(auto_ptr 是独占的), 在使用引用计数的机制上提供了可以共享所有权的智能指针

成员函数:

use_count :返回引用计数的个数
unique :返回是否是独占所有权( use_count 为 1)
swap :交换两个 shared_ptr 对象(即交换所拥有的对象)
reset :放弃内部对象的所有权或拥有对象的变更, 会引起原有对象的引用计数的减少
get :返回内部对象(指针)

share_ptr的简单例子:

int main()
{
   
	string *s1 = new string("s1");

	shared_ptr<string> ps1(s1);
	shared_ptr<string> ps2;
	ps2 = ps1;

	cout << ps1.use_count()<<endl;	//2
	cout<<ps2.use_count()<<endl;	//2
	cout << ps1.unique()<<endl;	//0

	string *s3 = new string("s3");
	shared_ptr<string> ps3(s3);

	cout << (ps1.get()) << endl;	//033AEB48
	cout << ps3.get() << endl;	//033B2C50
	swap(ps1, ps3);	//交换所拥有的对象
	cout << (ps1.get())<<endl;	//033B2C50
	cout << ps3.get() << endl;	//033AEB48

	cout << ps1.use_count()<<endl;	//1
	cout << ps2.use_count() << endl;	//2
	ps2 = ps1;
	cout << ps1.use_count()<<endl;	//2
	cout << ps2.use_count() << endl;	//2
	ps1.reset();	//放弃ps1的拥有权,引用计数的减少
	cout << ps1.use_count()<<endl;	//0
	cout << ps2.use_count()<<endl;	//1
}

share_ptr的缺点为:当两个对象相互使用一个shared_ptr成员变量指向对方,会造成循环引用,使引用计数失效,从而导致内存泄漏,此时需要使用weak_ptr。

weak_ptr

weak_ptr是用来解决shared_ptr相互引用时的死锁问题,如果说两个shared_ptr相互引用,那么这两个指针的引用计数永远不可能下降为0,资源永远不会释放;它是对对象的一种弱引用,不会增加对象的引用计数;它和shared_ptr之间可以相互转化,shared_ptr可以直接赋值给它,它可以通过调用lock函数来获得shared_ptr。

class B;	//声明
class A
{
   
public:
	shared_ptr<B> pb_;
	~A()
	{
   
		cout << "A delete\n";
	}
};

class B
{
   
public:
	shared_ptr<A> pa_;
	~B()
	{
   
		cout << "B delete\n";
	}
};

void fun()
{
   
	shared_ptr<B> pb(new B());
	shared_ptr<A> pa(new A());
	cout << pb.use_count() << endl;	//1
	cout << pa.use_count() << endl;	//1
	pb->pa_ = pa;
	pa->pb_ = pb;
	cout << pb.use_count() << endl;	//2
	cout << pa.use_count() << endl;	//2
}

int main()
{
   
	fun();
	return 0;
}

可以看到fun函数中pa ,pb之间互相引用,两个资源的引用计数为2,当要跳出函数时,智能指针pa,pb析构时两个资源引用计数会减1,但是两者引用计数还是为1,导致跳出函数时资源没有被释放(A、B的析构函数没有被调用)运行结果没有输出析构函数的内容,造成内存泄露。如果把其中一个改为weak_ptr就可以了,我们把类A里面的shared_ptr pb_,改为weak_ptr pb_ ,运行结果如下:

1
1
1
2
B delete
A delete

这样的话,资源B的引用开始就只有1,当pb析构时,B的计数变为0,B得到释放,B释放的同时也会使A的计数减1,同时pa析构时使A的计数减1,那么A的计数为0,A得到释放。

注意:我们不能通过weak_ptr直接访问对象的方法,比如B对象中有一个方法print(),我们不能这样访问,pa->pb_->print(),因为pb_是一个weak_ptr,应该先把它转化为shared_ptr,如:

shared_ptr<B> p = pa->pb_.lock();
p->print();

weak_ptr 没有重载*->运算符,但可以使用 lock 获得一个可用的 shared_ptr 对象. 注意, weak_ptr 在使用前需要检查合法性.

成员函数:

expired :用于检测所管理的对象是否已经释放, 如果已经释放, 返回 true; 否则返回 false.
lock :用于获取所管理的对象的强引用(shared_ptr). 如果 expired 为 true, 返回一个空的 shared_ptr; 否则返回一个 shared_ptr, 其内部对象指向与 weak_ptr 相同.
use_count :返回与 shared_ptr 共享的对象的引用计数.
reset :将 weak_ptr 置空.
weak_ptr :支持拷贝或赋值, 但不会影响对应的 shared_ptr 内部对象的计数.

share_ptr和weak_ptr的核心实现

weakptr的作为弱引用指针,其实现依赖于counter的计数器类和share_ptr的赋值,构造,所以先把counter和share_ptr简单实现

Counter简单实现

class Counter
{
   
public:
    Counter() : s(0), w(0){
   };
    int s;	//share_ptr的引用计数
    int w;	//weak_ptr的引用计数
};

counter对象的目地就是用来申请一个块内存来存引用基数,s是share_ptr的引用计数,w是weak_ptr的引用计数,当w为0时,删除Counter对象。

share_ptr的简单实现

template <class T>
class WeakPtr; //为了用weak_ptr的lock(),来生成share_ptr用,需要拷贝构造用

template <class T>
class SharePtr
{
   
public:
    SharePtr(T *p = 0) : _ptr(p)
    {
   
        cnt = new Counter();
        if (p)
            cnt->s = 1;
        cout << "in construct " << cnt->s << endl;
    }
    ~SharePtr()
    {
   
        release();
    }

    SharePtr(SharePtr<T> const &s)
    {
   
        cout << "in copy con" << endl;
        _ptr = s._ptr;
        (s.cnt)->s++;
        cout << "copy construct" << (s.cnt)->s << endl;
        cnt = s.cnt;
    }
    SharePtr(WeakPtr<T> const &w) //为了用weak_ptr的lock(),来生成share_ptr用,需要拷贝构造用
    {
   
        cout << "in w copy con " << endl;
        _ptr = w._ptr;
        (w.cnt)->s++;
        cout << "copy w  construct" << (w.cnt)->s << endl;
        cnt = w.cnt;
    }
    SharePtr<T> &operator=(SharePtr<T> &s)
    {
   
        if (this != &s)
        {
   
            release();
            (s.cnt)->s++;
            cout << "assign construct " << (s.cnt)->s << endl;
            cnt = s.cnt;
            _ptr = s._ptr;
        }
        return *this;
    }
    T &operator*()
    {
   
        return *_ptr;
    }
    T *operator->()
    {
   
        return _ptr;
    }
    friend class WeakPtr<T>; //方便weak_ptr与share_ptr设置引用计数和赋值

protected:
    void release()
    {
   
        cnt->s--;
        cout << "release " << cnt->s << endl;
        if (cnt->s < 1)
        {
   
            delete _ptr;
            if (cnt->w < 1)
            {
   
                delete cnt;
                cnt = NULL;
            }
        }
    }

private:
    T *_ptr;
    Counter *cnt;
};

share_ptr的给出的函数接口为:构造,拷贝构造,赋值,解引用,通过release来在引用计数为0的时候删除_ptr和cnt的内存。

weak_ptr简单实现

template <class T>
class WeakPtr
{
   
public: //给出默认构造和拷贝构造,其中拷贝构造不能有从原始指针进行构造
    WeakPtr()
    {
   
        _ptr = 0;
        cnt = 0;
    }
    WeakPtr(SharePtr<T> &s) : _ptr(s._ptr), cnt(s.cnt)
    {
   
        cout << "w con s" << endl;
        cnt->w++;
    }
    WeakPtr(WeakPtr<T> &w) : _ptr(w._ptr), cnt(w.cnt)
    {
   
        cnt->w++;
    }
    ~WeakPtr()
    {
   
        release();
    }
    WeakPtr<T> &operator=(WeakPtr<T> &w)
    {
   
        if (this != &w)
        {
   
            release();
            cnt = w.cnt;
            cnt->w++;
            _ptr = w._ptr;
        }
        return *this;
    }
    WeakPtr<T> &operator=(SharePtr<T> &s)
    {
   
        cout << "w = s" << endl;
        release();
        cnt = s.cnt;
        cnt->w++;
        _ptr = s._ptr;
        return *this;
    }
    SharePtr<T> lock()
    {
   
        return SharePtr<T>(*this);
    }
    bool expired()
    {
   
        if (cnt)
        {
   
            if (cnt->s > 0)
            {
   
                cout << "empty" << cnt->s << endl;
                return false;
            }
        }
        return true;
    }
    friend class SharePtr<T>; //方便weak_ptr与share_ptr设置引用计数和赋值
    
protected:
    void release()
    {
   
        if (cnt)
        {
   
            cnt->w--;
            cout << "weakptr release" << cnt->w << endl;
            if (cnt->w < 1 && cnt->s < 1)
            {
   
                //delete cnt;
                cnt = NULL;
            }
        }
    }

private:
    T *_ptr;
    Counter *cnt;
};

weak_ptr一般通过share_ptr来构造,通过expired函数检查原始指针是否为空,lock来转化为share_ptr。


转载:https://blog.csdn.net/TABE_/article/details/117391903
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场