Collection架构
List
ArrayList
cloneable其实就是一个标记接口,只有实现这个接口后,然后在类中重写Object中的clone方法,然后通过类调用clone方法才能克隆成功,如果不实现这个接口,则会抛出CloneNotSupportedException(克隆不被支持)异常。Object中clone方法:
protected native Object clone() throws CloneNotSupportedException;
RandomAccess在java.util.Collections#shuffle有用,源码如下
JDK中推荐的是对List集合尽量要实现RandomAccess接口
如果集合类是RandomAccess的实现,则尽量用for(int i = 0; i < size; i++) 来遍历而不要用Iterator迭代器来遍历,在效率上要差一些。反过来,如果List是Sequence List,则最好用迭代器来进行迭代。
具体请点击此博客
add
public boolean add(E e) {
//确定容量
ensureCapacityInternal(size + 1); // Increments modCount!!
//可存null
elementData[size++] = e;
return true;
}
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
//初始化时,如设置的索引值<默认,则默认值
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
//如果当前索引>数组容量
if (minCapacity - elementData.length > 0)
//扩充容量
grow(minCapacity);
}
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
//扩充容量1.5倍
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
//扩充后的容量>最大容量
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
//超过Int最大值,则异常
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
其他查找,修改,删除
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
public E set(int index, E element) {
rangeCheck(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
//如果不是最后一个元素,则调用native
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
//释放最后一个元素
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
总结
ArrayList可以传Null值
ArrayList扩容大小方法为grow,每次扩容当前大小的一半的容量
ArrayList本质是一个elementData数组
arrayList实现了RandomAccess,所以在遍历它的时候推荐使用for循环提升效率。
ArrayList继承List接口,作者明确表示是一个意外,因为AbstractList也继承了
因为本身是数组
所以查询修改快,O(1)
删除,插入因为调用native方法,慢
LinkedList
因为继承了队列接口,所以新增了pop,poll,push,peek,offer等方法
offer&add
public boolean offer(E e) {
return add(e);
}
public boolean add(E e) {
linkLast(e);
return true;
}
void linkLast(E e) {
final Node<E> l = last;
//创建新的node
final Node<E> newNode = new Node<>(l, e, null);
//赋值成最后的节点
last = newNode;
//如果last为null,说明第一次赋值,则设置为first
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
push
public void push(E e) {
addFirst(e);
}
public void addFirst(E e) {
linkFirst(e);
}
/**
* Links e as first element.
* 添加到第一个节点
*/
private void linkFirst(E e) {
final Node<E> f = first;
//第一个值为first,因为当前节点设置为first,所以null
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
//f为null,说明第一次初始化,则最后的节点也是first
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}
poll &remove
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
//释放GC
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}
public E remove() {
return removeFirst();
}
public E removeFirst() {
final Node<E> f = first;
//为null抛出异常
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}
peek&element
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
public E element() {
return getFirst();
}
public E getFirst() {
final Node<E> f = first;
//为null则异常
if (f == null)
throw new NoSuchElementException();
return f.item;
}
remove
public boolean remove(Object o) {
//对null的处理
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
//first处理
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
//last处理
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
//释放GC
x.item = null;
size--;
modCount++;
return element;
}
set
public E set(int index, E element) {
//index判断
checkElementIndex(index);
//查找
Node<E> x = node(index);
//修改值
E oldVal = x.item;
x.item = element;
return oldVal;
}
Node<E> node(int index) {
// assert isElementIndex(index);
//如果小于node一半大小,从头遍历
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
总结
维护头尾2个node
查询,index<size/2则first开始,否则last开始
可以存null
因为采用链表数据结构存储
所以查询,修改慢 O(N)
插入,删除快O(1)+O(N)
peek和poll针对null做了异常处理
Vector
public Vector() {
this(10);
}
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
private void ensureCapacityHelper(int minCapacity) {
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
默认10容量,且线程安全,因为添加了方法级别的同步锁,因为锁比较重量级,所以相对很少用的上.一般采用分段锁,乐观锁来加锁.
Set
HashSet
//底层维护hashMap
public HashSet() {
map = new HashMap<>();
}
public boolean add(E e) {
//利用hashMap存key,value存储虚拟值
return map.put(e, PRESENT)==null;
}
public boolean remove(Object o) {
return map.remove(o)==PRESENT;
}
底层维护hashMap
利用PRESENT作为value
LinkedHashSet
public LinkedHashSet() {
super(16, .75f, true);
}
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
map = new LinkedHashMap<>(initialCapacity, loadFactor);
}
底层维护LinkedHashMap
TreeSet
利用PRESENT作为value
底层维护TreeMap
总结
List和Set的区别在于是否唯一
如果存储的值唯一
则Set
排序?
是:TreeSet,内部使用二叉树
否:HashSet,数组+链表存储,所以无序,但因此访问速度O(1)+链表长度
否则List
增删多:LinkedList
因为底层链表的原因,所以修改的时候,只需要修改引用即可,所以O(1)
查询多:ArrayList,线性表的原因,查询速度很快
转载:https://blog.csdn.net/Nuan_Feng/article/details/106314451