小言_互联网的博客

redis五种数据类型讲解及简单操作

327人阅读  评论(0)

一、Redis 简介

Redis 的优点

以下是 Redis 的一些优点:

  • 异常快 - Redis 非常快,每秒可执行大约 110000 次的设置(SET)操作,每秒大约可执行 81000 次的读取/获取(GET)操作。
  • 支持丰富的数据类型 - Redis 支持开发人员常用的大多数数据类型,例如列表,集合,排序集和散列等等。这使得 Redis 很容易被用来解决各种问题,因为我们知道哪些问题可以更好使用地哪些数据类型来处理解决。
  • 操作具有原子性 - 所有 Redis 操作都是原子操作,这确保如果两个客户端并发访问,Redis 服务器能接收更新的值。
  • 多实用工具 - Redis 是一个多实用工具,可用于多种用例,如:缓存,消息队列(Redis 本地支持发布/订阅),应用程序中的任何短期数据,例如,web应用程序中的会话,网页命中计数等。

二、Redis 五种基本数据结构

Redis 有 5 种基础数据结构,它们分别是:string(字符串)list(列表)hash(字典)set(集合)zset(有序集合)。这 5 种是 Redis 相关知识中最基础、最重要的部分,下面我们结合源码以及一些实践来给大家分别讲解一下。

1)字符串 string

Redis 中的字符串是一种 动态字符串,这意味着使用者可以修改,它的底层实现有点类似于 Java 中的 ArrayList,有一个字符数组

  • 注:Redis 规定了字符串的长度不得超过 512 MB。

对字符串的基本操作

设置和获取键值对

> SET key value
OK
> GET key
"value"

值可以是任何种类的字符串(包括二进制数据),例如你可以在一个键下保存一张 .jpeg 图片,只需要注意不要超过 512 MB 的最大限度就好了。

当 key 存在时,SET 命令会覆盖掉你上一次设置的值:

> SET key newValue
OK
> GET key
"newValue"

另外你还可以使用 EXISTSDEL 关键字来查询是否存在和删除键值对:

> EXISTS key
(integer) 1
> DEL key
(integer) 1
> GET key
(nil)

批量设置键值对

> SET key1 value1
OK
> SET key2 value2
OK
> MGET key1 key2 key3    # 返回一个列表
1) "value1"
2) "value2"
3) (nil)
> MSET key1 value1 key2 value2
> MGET key1 key2
1) "value1"
2) "value2"

过期和 SET 命令扩展

可以对 key 设置过期时间,到时间会被自动删除,这个功能常用来控制缓存的失效时间。(过期可以是任意数据结构)

> SET key value1
> GET key
"value1"
> EXPIRE name 5    # 5s 后过期
...                # 等待 5s
> GET key
(nil)

等价于 SET + EXPIRESETNX 命令:

> SETNX key value1
...                # 等待 5s 后获取
> GET key
(nil)

> SETNX key value1  # 如果 key 不存在则 SET 成功
(integer) 1
> SETNX key value1  # 如果 key 存在则 SET 失败
(integer) 0
> GET key
"value"             # 没有改变 

计数

如果 value 是一个整数,还可以对它使用 INCR 命令进行 原子性 的自增操作,这意味着及时多个客户端对同一个 key 进行操作,也决不会导致竞争的情况:

> SET counter 100
> INCR count
(interger) 101
> INCRBY counter 50
(integer) 151

返回原值的 GETSET 命令

对字符串,还有一个 GETSET 比较让人觉得有意思,它的功能跟它名字一样:为 key 设置一个值并返回原值:

> SET key value
> GETSET key value1
"value"

这可以对于某一些需要隔一段时间就统计的 key 很方便的设置和查看,例如:系统每当由用户进入的时候你就是用 INCR 命令操作一个 key,当需要统计时候你就把这个 key 使用 GETSET 命令重新赋值为 0,这样就达到了统计的目的。

2)列表 list

Redis 的列表相当于 Java 语言中的 LinkedList,注意它是链表而不是数组。这意味着 list 的插入和删除操作非常快,时间复杂度为 O(1),但是索引定位很慢,时间复杂度为 O(n)。

链表的基本操作

  • LPUSHRPUSH 分别可以向 list 的左边(头部)和右边(尾部)添加一个新元素;
  • LRANGE 命令可以从 list 中取出一定范围的元素;
  • LINDEX 命令可以从 list 中取出指定下表的元素,相当于 Java 链表操作中的 get(int index) 操作;

示范:

> rpush mylist A
(integer) 1
> rpush mylist B
(integer) 2
> lpush mylist first
(integer) 3
> lrange mylist 0 -1    # -1 表示倒数第一个元素, 这里表示从第一个元素到最后一个元素,即所有
1) "first"
2) "A"
3) "B"

list 实现队列

队列是先进先出的数据结构,常用于消息排队和异步逻辑处理,它会确保元素的访问顺序:

> RPUSH books python java golang
(integer) 3
> LPOP books
"python"
> LPOP books
"java"
> LPOP books
"golang"
> LPOP books
(nil)

list 实现栈

栈是先进后出的数据结构,跟队列正好相反:

> RPUSH books python java golang
> RPOP books
"golang"
> RPOP books
"java"
> RPOP books
"python"
> RPOP books
(nil)

3)字典 hash

Redis 中的字典相当于 Java 中的 HashMap,内部实现也差不多类似,都是通过 “数组 + 链表” 的链地址法来解决部分 哈希冲突,同时这样的结构也吸收了两种不同数据结构的优点。
具体实现为字典结构的内部包含两个 hashtable**,通常情况下只有一个 hashtable 是有值的,但是在字典扩容缩容时,需要分配新的 hashtable,然后进行 渐进式搬迁 (下面说原因)

渐进式 rehash

大字典的扩容是比较耗时间的,需要重新申请新的数组,然后将旧字典所有链表中的元素重新挂接到新的数组下面,这是一个 O(n) 级别的操作,作为单线程的 Redis 很难承受这样耗时的过程,所以 Redis 使用 渐进式 rehash 小步搬迁:

渐进式 rehash 会在 rehash 的同时,保留新旧两个 hash 结构,如上图所示,查询时会同时查询两个 hash 结构,然后在后续的定时任务以及 hash 操作指令中,循序渐进的把旧字典的内容迁移到新字典中。当搬迁完成了,就会使用新的 hash 结构取而代之。

扩缩容的条件

正常情况下,当 hash 表中 元素的个数等于第一维数组的长度时,就会开始扩容,扩容的新数组是 原数组大小的 2 倍。不过如果 Redis 正在做 bgsave(持久化命令),为了减少内存也得过多分离,Redis 尽量不去扩容,但是如果 hash 表非常满了,达到了第一维数组长度的 5 倍了,这个时候就会 强制扩容

当 hash 表因为元素逐渐被删除变得越来越稀疏时,Redis 会对 hash 表进行缩容来减少 hash 表的第一维数组空间占用。所用的条件是 元素个数低于数组长度的 10%,缩容不会考虑 Redis 是否在做 bgsave

字典的基本操作

hash 也有缺点,hash 结构的存储消耗要高于单个字符串,所以到底该使用 hash 还是字符串,需要根据实际情况再三权衡:

> HSET books java "think in java"    # 命令行的字符串如果包含空格则需要使用引号包裹
(integer) 1
> HSET books python "python cookbook"
(integer) 1
> HGETALL books    # key 和 value 间隔出现
1) "java"
2) "think in java"
3) "python"
4) "python cookbook"
> HGET books java
"think in java"
> HSET books java "head first java"  
(integer) 0        # 因为是更新操作,所以返回 0
> HMSET books java "effetive  java" python "learning python"    # 批量操作
OK

4)集合 set

Redis 的集合相当于 Java 语言中的 HashSet,它内部的键值对是无序、唯一的。它的内部实现相当于一个特殊的字典,字典中所有的 value 都是一个值 NULL。

集合 set 的基本使用

由于该结构比较简单,我们直接来看看是如何使用的:

> SADD books java
(integer) 1
> SADD books java    # 重复
(integer) 0
> SADD books python golang
(integer) 2
> SMEMBERS books    # 注意顺序,set 是无序的 
1) "java"
2) "python"
3) "golang"
> SISMEMBER books java    # 查询某个 value 是否存在,相当于 contains
(integer) 1
> SCARD books    # 获取长度
(integer) 3
> SPOP books     # 弹出一个
"java"

5)有序列表 zset

这可能使 Redis 最具特色的一个数据结构了,它类似于 Java 中 SortedSetHashMap 的结合体,一方面它是一个 set,保证了内部 value 的唯一性,另一方面它可以为每个 value 赋予一个 score 值,用来代表排序的权重。

它的内部实现用的是一种叫做 「跳跃表」 的数据结构。

跳跃表,最下面一层所有的元素都会串起来,然后每隔几个元素就会挑选出一个代表,再把这几个代表使用另外一级指针串起来。然后再在这些代表里面挑出二级代表,再串起来。最终形成了一个金字塔的结构。

想一下你目前所在的地理位置:亚洲 > 中国 > 某省 > 某市 > …,就是这样一个结构!

有序列表 zset 基础操作

> ZADD books 9.0 "think in java"
> ZADD books 8.9 "java concurrency"
> ZADD books 8.6 "java cookbook"

> ZRANGE books 0 -1     # 按 score 排序列出,参数区间为排名范围
1) "java cookbook"
2) "java concurrency"
3) "think in java"

> ZREVRANGE books 0 -1  # 按 score 逆序列出,参数区间为排名范围
1) "think in java"
2) "java concurrency"
3) "java cookbook"

> ZCARD books           # 相当于 count()
(integer) 3

> ZSCORE books "java concurrency"   # 获取指定 value 的 score
"8.9000000000000004"                # 内部 score 使用 double 类型进行存储,所以存在小数点精度问题

> ZRANK books "java concurrency"    # 排名
(integer) 1

> ZRANGEBYSCORE books 0 8.91        # 根据分值区间遍历 zset
1) "java cookbook"
2) "java concurrency"

> ZRANGEBYSCORE books -inf 8.91 withscores  # 根据分值区间 (-∞, 8.91] 遍历 zset,同时返回分值。inf 代表 infinite,无穷大的意思。
1) "java cookbook"
2) "8.5999999999999996"
3) "java concurrency"
4) "8.9000000000000004"

> ZREM books "java concurrency"             # 删除 value
(integer) 1
> ZRANGE books 0 -1
1) "java cookbook"
2) "think in java"

转载:https://blog.csdn.net/liuerchong/article/details/105284639
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场