大约10年前,我写过两篇关于Linux内核CFS调度器的文章:
https://blog.csdn.net/dog250/article/details/5302865
https://blog.csdn.net/dog250/article/details/5302864
我觉得这两篇文章是垃圾,但我又不删,留着给自己喷吧!
不就是一个内核参数 kernel.sched_child_runs_first 吗?在今天看来,验证它是否起作用实在太简单了。
首先解释一下 为什么要子进程先运行 。
因为fork的行为造成了后续的COW(copy on write),一般而言子进程会调用exec而替换掉需要COW的地址空间,子进程先运行可以避免不必要的COW开销。
那么对于CFS调度器而言,kernel.sched_child_runs_first是否有作用呢?我们试一下便知道,依然使用那两篇垃圾文章中的例子:
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
int main(int argc,char *argv[])
{
int v = atoi(argv[1]);
printf("%d\n", getpid());
nice(v);
int i = 90000;
while (i-->0) {
v++;
}
if(fork() == 0) {
printf("sub\n");
}
printf("main,%d\n",v);
}
我们设置好内核参数后,看看到底哪个先打印出来:
[root@localhost test]# sysctl -w kernel.sched_child_runs_first=1
kernel.sched_child_runs_first = 1
[root@localhost test]#
[root@localhost test]# ./a.out 10
5101
main,90010
[root@localhost test]# sub
[root@localhost test]# ./a.out -10
5105
sub
main,89990
[root@localhost test]# ./a.out -10
5108
main,89990
[root@localhost test]# sub
[root@localhost test]# ./a.out -10
5112
main,89990
[root@localhost test]# sub
[root@localhost test]# ./a.out 10
5117
main,90010
[root@localhost test]# sub
不用试了,它不起作用,不管你有没有设置START_DEBIT这个feature!它和START_DEBIT根本没有关系,dog250在2010年写的那些东西故弄玄虚,把简单问题复杂化!还扯什么START_DEBIT,还扯什么统计概览,真是无中生有,垃圾啊垃圾。
正确的排查问题的方法完全就不是这个思路!
现在,我来展示正确的做法。在实验之前,澄清一个事实, 不要用printf来确认到底谁先运行! 因为printf太复杂了,执行它的周期太久,有可能虽然子进程先运行但却是父进程先打印出来。
所以,我用exit:
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
int main(int argc,char *argv[])
{
int v = atoi(argv[1]);
printf("%d\n", getpid());
nice(v);
if(fork() == 0) {
exit(0);
}
exit(0);
}
我们用操作系统的方式去观测,而不是用printf,这次,我们用stap:
#!/usr/bin/stap -g
global g_se;
global g_cfs_rq;
probe begin {
g_cfs_rq = 0;
g_se = 0;
}
probe kernel.function("__schedule")
{
t_curr = task_current();
if (task_execname(t_curr) == "a.out")
printf("[_schedule] current task: %s[%d]\n", task_execname(t_curr), task_pid(t_curr));
}
probe kernel.function("do_exit")
{
t_curr = task_current();
if (task_execname(t_curr) == "a.out")
printf("Exit task: %s[%d]\n", task_execname(t_curr), task_pid(t_curr));
}
probe kernel.function("pick_next_task_fair")
{
g_cfs_rq = &$rq->cfs;
}
function container_of_entity:long(se:long)
{
offset = &@cast(0, "struct task_struct")->se;
return se - offset;
}
probe kernel.function("pick_next_task_fair").return
{
if($return != 0) {
se = &$return->se;
t_se = container_of_entity(se);
t_curr = task_current();
if (task_execname(t_se) == "a.out" || task_execname(t_curr) == "a.out") {
printf("[pick_next_task_fair] Return task: %s[%d] From current: %s[%d]\n", task_execname(t_se), task_pid(t_se), task_execname(t_curr), task_pid(t_curr));
}
}
}
probe kernel.function("wake_up_new_task")
{
g_se = &$p->se;
g_cfs_rq = @cast(g_se, "struct sched_entity")->cfs_rq;
}
probe kernel.function("wake_up_new_task").return
{
t_se = container_of_entity(g_se);
tname = task_execname(t_se);
vruntime = @cast(g_se, "struct sched_entity")->vruntime;
if (tname == "a.out") {
curr = @cast(g_cfs_rq, "struct cfs_rq")->curr;
t_curr = container_of_entity(curr);
curr_vruntime = @cast(curr, "struct sched_entity")->vruntime;
printf("[wake_up_new_task] current:[%s][%d] curr:%d new:%d del:%d\n",
task_execname(t_curr), task_pid(t_curr), curr_vruntime, vruntime,
curr_vruntime - vruntime);
}
g_se = 0;
g_cfs_rq = 0;
}
probe kernel.function("place_entity")
{
t_initial = $initial;
if (t_initial == 1) {
g_cfs_rq = $cfs_rq;
g_se = $se;
}
}
probe kernel.function("place_entity").return
{
if (g_se) {
t_se = container_of_entity(g_se);
tname = task_execname(t_se);
vruntime = @cast(g_se, "struct sched_entity")->vruntime;
if (tname == "a.out") {
curr = @cast(g_cfs_rq, "struct cfs_rq")->curr;
t_curr = container_of_entity(curr);
curr_vruntime = @cast(curr, "struct sched_entity")->vruntime;
printf("[place_entity] name:[%s][%d] curr:%d new:%d delta:%d\n",
task_execname(t_curr), task_pid(t_curr), curr_vruntime, vruntime,
curr_vruntime - vruntime);
}
g_se = 0;
g_cfs_rq = 0;
}
}
执行它,然后运行多次a.out,到底发生了什么,你就彻底知道了,下面是一个结果:
[root@localhost test]# ./a.out 10
5653
main,90010
[root@localhost test]# sub
# 另一个终端上打印的stap信息
[_schedule] current task: a.out[5653]
[pick_next_task_fair] Return task: a.out[5653] From current: a.out[5653]
# 父进程fork子进程,并设置了它的初始vruntime。
# 后续的child runs first检查会resched current
[place_entity] name:[a.out][5653] curr:74161009564 new:74192039854 delta:-31030290
# 注意,这里在fork中发生了切换,why??因为在fork中spin_unlock的时候会check resched!
# 这就发生了task_fork_fair最后释放rq lock时!
[_schedule] current task: a.out[5653]
[pick_next_task_fair] Return task: rcu_sched[10] From current: a.out[5653]
[pick_next_task_fair] Return task: a.out[5653] From current: sshd[1392]
# 父进程返回运行,wakeup子进程,然而vruntime的delta却不足一个granularity!
# 不足一个granularity,子进程无法抢占父进程!
# 换句话说,之前由于child runs first进行的resched已经失效!
[wake_up_new_task] current:[a.out][5653] curr:74192443179 new:74192132619 del:310560
# 依然是父进程先运行。
Exit task: a.out[5653]
[_schedule] current task: a.out[5653]
[pick_next_task_fair] Return task: rcu_sched[10] From current: a.out[5653]
[pick_next_task_fair] Return task: a.out[5654] From current: sshd[1392]
# 子进程被调度运行
Exit task: a.out[5654]
很尴尬的事发生了,为了child runs first而执行resched_task,需要lock住rq,之所以要resched_task可能是交换父子的vruntime之后,希望子进程继续运行下去,替换父进程。
然而unlock rq时的check preempt却白白消耗了这次resched的机会!为什么说白白消耗呢?因为调用sched_fork的时候,子进程尚未准备好,也就是说,它尚不足以被wakeup!
只要在rq unlock时check preempt时候,父进程被其它进程抢占(在父进程优先级低时更容易发生!!),那么子进程大概率不会runs first了,因为后面还要check granularity!
如果我们用更小的nice值运行a.out,那么子进程还是有机会runs first的,因为在rq unlock的时候,父进程不容易被其它进程抢占进而消费掉resched的机会,留到后面wakeup child的时候,还可以使用,此时子进程已经拥有了执行的条件,进而抢占掉父进程!
或者说,即便这次抢占父进程失败,那么它的vruntime已经低于父进程,它在红黑树中的位置是比父进程更加leftmost的,终究还是要比父进程runs first。
好了,情景分析完毕,该解题了!如何让kernel.sched_child_runs_first如其意之所表达,真正做到child runs first呢?
2010年dog250写的那个patch是错的,没有意义。真正的解法是:
- 在wakeup child的时候再check sched_child_runs_first,进而resched。
我们来验证一下,由于我懒得为这个重新编译一遍内核,所以我采用stap guru hook的方式来玩玩。
首先我们废除原始的sched_child_runs_first判断,这很容易,关掉这个开关即可:
[root@localhost test]# sysctl -w kernel.sched_child_runs_first=0
kernel.sched_child_runs_first = 0
然后,我们以guru模式运行下面的stap脚本:
#!/usr/bin/stap -g
global g_p;
probe begin {
g_p = 0;
}
%{
static void *(*_resched_task)(struct task_struct *p);
%}
function resched(tsk:long, tskp:long)
%{
struct task_struct *task = NULL, *parent = NULL;
struct sched_entity *pse = NULL, *cse = NULL;
task = (struct task_struct *)STAP_ARG_tsk;
parent = (struct task_struct *)STAP_ARG_tskp;
cse = &task->se;
pse = &parent->se;
if (_resched_task == NULL)
_resched_task = (void *)kallsyms_lookup_name("resched_task");
if (_resched_task && pse->vruntime < cse->vruntime) {
swap(pse->vruntime, cse->vruntime);
STAP_PRINTF("---[%lu]------[%lu]-------\n", pse->vruntime, cse->vruntime);
_resched_task(current);
}
%}
probe kernel.function("check_preempt_wakeup")
{
g_p = $p;
}
// 这里的trick在于,由于我们的父子a.out都是纯CPU型的,只在创建时被wakeup一次,所以hook该点。
probe kernel.function("check_preempt_wakeup").return
{
parent = @cast(g_p, "struct task_struct")->parent;
// 这里过滤掉了除了我们的fork场景之外的所有其它的wakeup场景。
if (task_execname(g_p) == "a.out" || task_execname(parent) == "a.out") {
resched(g_p, parent);
}
g_p = 0;
}
来吧,执行之!为了观测效果,我们可以再次同时执行之前的脚本(hook不要冲突即可):
[root@localhost test]# ./a.out 10
6988
sub
main,90010
# 以下是输出
[_schedule] current task: a.out[6988]
[pick_next_task_fair] Return task: kworker/0:0[5380] From current: a.out[6988]
[pick_next_task_fair] Return task: a.out[6988] From current: sshd[1392]
[_schedule] current task: a.out[6988]
[pick_next_task_fair] Return task: rcu_sched[10] From current: a.out[6988]
[pick_next_task_fair] Return task: a.out[6988] From current: sshd[1392]
[place_entity] name:[a.out][6988] curr:78347075684 new:78440166555 delta:-93090871
# 在place_entity和wake_up_new_task之间没有被打断!
# 因为把resched从place移动到了wakeup的时候。
[wake_up_new_task] current:[a.out][6988] curr:78440166555 new:78347480815 del:92685740
[_schedule] current task: a.out[6988]
[pick_next_task_fair] Return task: a.out[6989] From current: a.out[6988]
# 子进程runs first,优先退出!
Exit task: a.out[6989]
[_schedule] current task: a.out[6989]
[pick_next_task_fair] Return task: kworker/0:0[5380] From current: a.out[6989]
[pick_next_task_fair] Return task: a.out[6988] From current: sshd[1392]
[_schedule] current task: a.out[6988]
[pick_next_task_fair] Return task: kworker/0:0[5380] From current: a.out[6988]
[pick_next_task_fair] Return task: a.out[6988] From current: sshd[1392]
# 父进程在后
Exit task: a.out[6988]
[_schedule] current task: a.out[6988]
[pick_next_task_fair] Return task: systemd[1] From current: a.out[6988]
多试几次,还是这样的结果。
现在,是时候回到printf了,虽然它可能并不准,但是肉眼观测,让经理信服,也只能靠它了:
[root@localhost test]# ./a.out 18
sub
main,90018
[root@localhost test]# ./a.out -18
sub
main,89982
[root@localhost test]# ./a.out -10
sub
main,89990
[root@localhost test]# ./a.out 10
sub
main,90010
[root@localhost test]# ./a.out 1
sub
main,90001
[root@localhost test]# ./a.out -1
sub
main,89999
[root@localhost test]# ./a.out 0
sub
main,90000
咋试咋舒服!
好了,现在该出patch了。这个patch才是真的有效的:
Date: Thu, 23 Apr 2020 22:42:07 +0800
Subject: [PATCH] fix child runs first
---
kernel/sched/fair.c | 20 +++++++++++---------
1 file changed, 11 insertions(+), 9 deletions(-)
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 6a33137..f7f83a3 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -4564,6 +4564,17 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
int scale = cfs_rq->nr_running >= sched_nr_latency;
int next_buddy_marked = 0;
+ if ((wake_flags&WF_FORK) && sysctl_sched_child_runs_first && se &&
+ entity_before(se, pse)) {
+ /*
+ * Upon rescheduling, sched_class::put_prev_task() will place
+ * 'current' within the tree based on its new key value.
+ */
+ swap(se->vruntime, pse->vruntime);
+ resched_task(curr);
+ }
+
+
if (unlikely(se == pse))
return;
@@ -7086,15 +7097,6 @@ static void task_fork_fair(struct task_struct *p)
se->vruntime = curr->vruntime;
place_entity(cfs_rq, se, 1);
- if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
- /*
- * Upon rescheduling, sched_class::put_prev_task() will place
- * 'current' within the tree based on its new key value.
- */
- swap(curr->vruntime, se->vruntime);
- resched_task(rq->curr);
- }
-
se->vruntime -= cfs_rq->min_vruntime;
raw_spin_unlock_irqrestore(&rq->lock, flags);
--
1.8.3.1
对了,为了让这个patch不是真正可以打入内核的,我特意在老旧的内核上制作了这个patch。真正手艺人的玩法永远不是制作真正的patch,二进制hook不好吗?哈哈!
浙江温州皮鞋湿,下雨进水不会胖。
转载:https://blog.csdn.net/dog250/article/details/105756168