15 布尔索引
15.1 导入数据
# 以movie_title为索引列
movies = pd.read_csv("./pandasLearnData/movie.csv",index_col="movie_title")
movies.head(5)
color | director_name | num_critic_for_reviews | duration | ... | actor_2_facebook_likes | imdb_score | aspect_ratio | movie_facebook_likes | |
---|---|---|---|---|---|---|---|---|---|
movie_title | |||||||||
Avatar | Color | James Cameron | 723.0 | 178.0 | ... | 936.0 | 7.9 | 1.78 | 33000 |
Pirates of the Caribbean: At World's End | Color | Gore Verbinski | 302.0 | 169.0 | ... | 5000.0 | 7.1 | 2.35 | 0 |
Spectre | Color | Sam Mendes | 602.0 | 148.0 | ... | 393.0 | 6.8 | 2.35 | 85000 |
The Dark Knight Rises | Color | Christopher Nolan | 813.0 | 164.0 | ... | 23000.0 | 8.5 | 2.35 | 164000 |
Star Wars: Episode VII - The Force Awakens | NaN | Doug Walker | NaN | NaN | ... | 12.0 | 7.1 | NaN | 0 |
5 rows × 27 columns
15.2 构建布尔索引
# 找出时长在两个小时以上的电影
movie_2_hours = movies.duration > 120
print("类别:",type(movie_2_hours))
print("<"+"="*75+">")
print(movie_2_hours)
# 可以看见经过比较运算符后,我们得到了一个以movie_title为索引,值为布尔类型的Series
# 这就是布尔索引
类别: <class 'pandas.core.series.Series'>
<===========================================================================>
movie_title
Avatar True
Pirates of the Caribbean: At World's End True
Spectre True
The Dark Knight Rises True
...
The Following False
A Plague So Pleasant False
Shanghai Calling False
My Date with Drew False
Name: duration, Length: 4916, dtype: bool
15.3 统计布尔值
# 统计电影时长超过两小时的电影数量
movie_2_hours.sum()
1039
# 统计时长超过两个小时的电影所占比例
movie_2_hours.mean()
0.2113506916192026
# 因为原来duration字段原来有空缺值
print("duration字段有是否空缺值:",movies.duration.notnull().any())
# 所以先去掉空缺值再计算
movies.duration.dropna().gt(120).mean()
duration字段有是否空缺值: True
0.21199755152009794
15.4 比较同一个DataFrame中的两列
# 电影中女二号脸书粉丝数大于女二号的电影
movies.actor_1_facebook_likes < movies.actor_2_facebook_likes
movie_title
Avatar False
Pirates of the Caribbean: At World's End False
Spectre False
The Dark Knight Rises False
...
The Following False
A Plague So Pleasant False
Shanghai Calling False
My Date with Drew False
Length: 4916, dtype: bool
15.5 any() 和 all() 的区别
# all() 全真时才为真
print(pd.Series([True,True,True]).all())
# all() 有一个假时即返回假
print(pd.Series([True,False,True]).all())
True
False
# any() 全假时才为假
print(pd.Series([False,False,False]).any())
# any() 有一个真时即返回真
print(pd.Series([False,False,True]).any())
False
True
15.6 多个布尔索引的逻辑运算
!!!注意逻辑运算符的优先级高于比较运算符所以要打括号!!!
15.6.1 与运算
# 电影时长大于两个小时且女一号的粉丝数大于1000
(movies["duration"] > 120) & (movies["actor_1_facebook_likes"] > 1000)
movie_title
Avatar False
Pirates of the Caribbean: At World's End True
Spectre True
The Dark Knight Rises True
...
The Following False
A Plague So Pleasant False
Shanghai Calling False
My Date with Drew False
Length: 4916, dtype: bool
15.6.2 或运算
# 电影时长大于120 或者 小于 100的电影
(movies["duration"] < 100) | (movies["duration"] > 120)
movie_title
Avatar True
Pirates of the Caribbean: At World's End True
Spectre True
The Dark Knight Rises True
...
The Following True
A Plague So Pleasant True
Shanghai Calling False
My Date with Drew True
Name: duration, Length: 4916, dtype: bool
15.6.3 非运算
# 找出时长不大于120的电影
~ (movies["duration"] > 120)
movie_title
Avatar False
Pirates of the Caribbean: At World's End False
Spectre False
The Dark Knight Rises False
...
The Following True
A Plague So Pleasant True
Shanghai Calling True
My Date with Drew True
Name: duration, Length: 4916, dtype: bool
15.6.4 in运算
# 找出电影时长在集合中的电影
movies["duration"].isin([90.0,100.0,120.0])
movie_title
Avatar False
Pirates of the Caribbean: At World's End False
Spectre False
The Dark Knight Rises False
...
The Following False
A Plague So Pleasant False
Shanghai Calling True
My Date with Drew True
Name: duration, Length: 4916, dtype: bool
15.7 使用布尔索引获取数据
# 取数据集当中电影时长大于两个小时的行
movies[movie_2_hours]
color | director_name | num_critic_for_reviews | duration | ... | actor_2_facebook_likes | imdb_score | aspect_ratio | movie_facebook_likes | |
---|---|---|---|---|---|---|---|---|---|
movie_title | |||||||||
Avatar | Color | James Cameron | 723.0 | 178.0 | ... | 936.0 | 7.9 | 1.78 | 33000 |
Pirates of the Caribbean: At World's End | Color | Gore Verbinski | 302.0 | 169.0 | ... | 5000.0 | 7.1 | 2.35 | 0 |
Spectre | Color | Sam Mendes | 602.0 | 148.0 | ... | 393.0 | 6.8 | 2.35 | 85000 |
The Dark Knight Rises | Color | Christopher Nolan | 813.0 | 164.0 | ... | 23000.0 | 8.5 | 2.35 | 164000 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
Intolerance: Love's Struggle Throughout the Ages | Black and White | D.W. Griffith | 69.0 | 123.0 | ... | 22.0 | 8.0 | 1.33 | 691 |
The Big Parade | Black and White | King Vidor | 48.0 | 151.0 | ... | 12.0 | 8.3 | 1.33 | 226 |
Ordet | Black and White | Carl Theodor Dreyer | 54.0 | 126.0 | ... | 0.0 | 8.1 | 1.37 | 863 |
The Ridges | NaN | Brandon Landers | NaN | 143.0 | ... | 19.0 | 3.0 | NaN | 33 |
1039 rows × 27 columns
# 获取女一号脸书粉丝数大于1万且电影时长超过两小时的行
movies[(movies["actor_1_facebook_likes"] > 10000) & movie_2_hours]
color | director_name | num_critic_for_reviews | duration | ... | actor_2_facebook_likes | imdb_score | aspect_ratio | movie_facebook_likes | |
---|---|---|---|---|---|---|---|---|---|
movie_title | |||||||||
Pirates of the Caribbean: At World's End | Color | Gore Verbinski | 302.0 | 169.0 | ... | 5000.0 | 7.1 | 2.35 | 0 |
Spectre | Color | Sam Mendes | 602.0 | 148.0 | ... | 393.0 | 6.8 | 2.35 | 85000 |
The Dark Knight Rises | Color | Christopher Nolan | 813.0 | 164.0 | ... | 23000.0 | 8.5 | 2.35 | 164000 |
Spider-Man 3 | Color | Sam Raimi | 392.0 | 156.0 | ... | 11000.0 | 6.2 | 2.35 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
That Thing You Do! | Color | Tom Hanks | 75.0 | 149.0 | ... | 9000.0 | 6.9 | 1.37 | 0 |
Stonewall | Color | Roland Emmerich | 74.0 | 129.0 | ... | 463.0 | 4.5 | 2.35 | 0 |
The Good, the Bad and the Ugly | Color | Sergio Leone | 181.0 | 142.0 | ... | 34.0 | 8.9 | 2.35 | 20000 |
Rocky | Color | John G. Avildsen | 141.0 | 145.0 | ... | 1000.0 | 8.1 | 1.33 | 0 |
435 rows × 27 columns
15.8 扩展
15.8.1 使用标签索引代替布尔索引
15.8.1.1 布尔索引法
# 找出所有德克萨斯州的学校信息
college_data[college_data["STABBR"] == "TX"]
CITY | STABBR | HBCU | MENONLY | ... | PCTFLOAN | UG25ABV | MD_EARN_WNE_P10 | GRAD_DEBT_MDN_SUPP | |
---|---|---|---|---|---|---|---|---|---|
INSTNM | |||||||||
Abilene Christian University | Abilene | TX | 0.0 | 0.0 | ... | 0.5527 | 0.0381 | 40200 | 25985 |
Alvin Community College | Alvin | TX | 0.0 | 0.0 | ... | 0.0625 | 0.2841 | 34500 | 6750 |
Amarillo College | Amarillo | TX | 0.0 | 0.0 | ... | 0.1573 | 0.3431 | 31700 | 10950 |
Angelina College | Lufkin | TX | 0.0 | 0.0 | ... | 0.0000 | 0.2603 | 26900 | PrivacySuppressed |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
Strayer University-San Antonio | San Antonio | TX | NaN | NaN | ... | NaN | NaN | NaN | 36173.5 |
Strayer University-Stafford | Stafford | TX | NaN | NaN | ... | NaN | NaN | NaN | 36173.5 |
Vantage College | El Paso | TX | NaN | NaN | ... | NaN | NaN | NaN | 9500 |
Excel Learning Center-San Antonio South | San Antonio | TX | NaN | NaN | ... | NaN | NaN | NaN | 12125 |
472 rows × 26 columns
15.8.1.2 标签索引法
# 先设置 STABBR 字段为行索引
college_data2 = college_data.set_index("STABBR")
college_data2.loc["TX"]
CITY | HBCU | MENONLY | WOMENONLY | ... | PCTFLOAN | UG25ABV | MD_EARN_WNE_P10 | GRAD_DEBT_MDN_SUPP | |
---|---|---|---|---|---|---|---|---|---|
STABBR | |||||||||
TX | Abilene | 0.0 | 0.0 | 0.0 | ... | 0.5527 | 0.0381 | 40200 | 25985 |
TX | Alvin | 0.0 | 0.0 | 0.0 | ... | 0.0625 | 0.2841 | 34500 | 6750 |
TX | Amarillo | 0.0 | 0.0 | 0.0 | ... | 0.1573 | 0.3431 | 31700 | 10950 |
TX | Lufkin | 0.0 | 0.0 | 0.0 | ... | 0.0000 | 0.2603 | 26900 | PrivacySuppressed |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
TX | San Antonio | NaN | NaN | NaN | ... | NaN | NaN | NaN | 36173.5 |
TX | Stafford | NaN | NaN | NaN | ... | NaN | NaN | NaN | 36173.5 |
TX | El Paso | NaN | NaN | NaN | ... | NaN | NaN | NaN | 9500 |
TX | San Antonio | NaN | NaN | NaN | ... | NaN | NaN | NaN | 12125 |
472 rows × 25 columns
15.8.1.3 比较两种方法的速度
%timeit college_data[college_data["STABBR"] == "TX"]
%timeit college_data2.loc["TX"]
# 可以看到标签索引法相较于布尔索引法在时间上差了整整两个数量级
1.12 ms ± 84.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
559 µs ± 52 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
15.8.2 使用有序索引进行获取
15.8.2.1 排序前
# 没排序之前查看索引是否有序
college_data2.index.is_monotonic
False
15.8.2.2 排序后
college_data3 = college_data2.sort_index(ascending=True)
15.8.2.3 排序前后的速度
%timeit college_data2.loc["TX"]
%timeit college_data3.loc["TX"]
# 克见排序后的获取数据的时间快了一倍
570 µs ± 55.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
179 µs ± 14.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
15.8.3 使用唯一索引获取数据
15.8.3.1 判断索引是否唯一
college_data.index.is_unique
True
15.8.3.2 再比较两种的速度
%timeit college_data.loc["Stanford University"]
college_data4 = college_data.sort_index()
%timeit college_data4.loc["Stanford University"]
157 µs ± 1.94 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
159 µs ± 855 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
15.8.4 使用query方法提高可读性
c = "Color"
movies.query("100 <= duration <= 120 and actor_1_facebook_likes > 10000 and color==@c")
color | director_name | num_critic_for_reviews | duration | ... | actor_2_facebook_likes | imdb_score | aspect_ratio | movie_facebook_likes | |
---|---|---|---|---|---|---|---|---|---|
movie_title | |||||||||
The Golden Compass | Color | Chris Weitz | 251.0 | 113.0 | ... | 6000.0 | 6.1 | 2.35 | 0 |
Alice in Wonderland | Color | Tim Burton | 451.0 | 108.0 | ... | 25000.0 | 6.5 | 1.85 | 24000 |
X-Men: The Last Stand | Color | Brett Ratner | 334.0 | 104.0 | ... | 808.0 | 6.8 | 2.35 | 0 |
Monsters University | Color | Dan Scanlon | 376.0 | 104.0 | ... | 779.0 | 7.3 | 1.85 | 44000 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
The Slaughter Rule | Color | Alex Smith | 17.0 | 112.0 | ... | 1000.0 | 6.1 | 2.35 | 183 |
Now Is Good | Color | Ol Parker | 48.0 | 103.0 | ... | 766.0 | 7.2 | 2.35 | 0 |
Chasing Amy | Color | Kevin Smith | 147.0 | 113.0 | ... | 1000.0 | 7.3 | 1.85 | 0 |
The Grace Card | Color | David G. Evans | 25.0 | 101.0 | ... | 21.0 | 6.4 | NaN | 0 |
543 rows × 27 columns
movies.where(movies.duration < 60)
color | director_name | num_critic_for_reviews | duration | ... | actor_2_facebook_likes | imdb_score | aspect_ratio | movie_facebook_likes | |
---|---|---|---|---|---|---|---|---|---|
movie_title | |||||||||
Avatar | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN |
Pirates of the Caribbean: At World's End | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN |
Spectre | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN |
The Dark Knight Rises | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
The Following | Color | NaN | 43.0 | 43.0 | ... | 593.0 | 7.5 | 16.0 | 32000.0 |
A Plague So Pleasant | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN |
Shanghai Calling | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN |
My Date with Drew | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN |
4916 rows × 27 columns
15.8.5 使用where对Series进行查询
ac1_fb_likes = movies["actor_1_facebook_likes"].dropna()
# 使用were时会返回一个同等大小的Series,不满足条件的值会进行填充,通过other参数进行设置,默认为np.NaN
ac1_fb_likes.where(ac1_fb_likes > 300,other=-1).where(ac1_fb_likes < 10000,other=-1)
movie_title
Avatar 1000.0
Pirates of the Caribbean: At World's End -1.0
Spectre -1.0
The Dark Knight Rises -1.0
...
The Following 841.0
A Plague So Pleasant -1.0
Shanghai Calling 946.0
My Date with Drew -1.0
Name: actor_1_facebook_likes, Length: 4909, dtype: float64
15.8.6 DataFrame的mask操作
# mask 操作不会真的将数据删除,只是会将满足条件的行的所有字段置为空值
movies.mask(movies.actor_1_facebook_likes <= 1000)
color | director_name | num_critic_for_reviews | duration | ... | actor_2_facebook_likes | imdb_score | aspect_ratio | movie_facebook_likes | |
---|---|---|---|---|---|---|---|---|---|
movie_title | |||||||||
Avatar | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN |
Pirates of the Caribbean: At World's End | Color | Gore Verbinski | 302.0 | 169.0 | ... | 5000.0 | 7.1 | 2.35 | 0.0 |
Spectre | Color | Sam Mendes | 602.0 | 148.0 | ... | 393.0 | 6.8 | 2.35 | 85000.0 |
The Dark Knight Rises | Color | Christopher Nolan | 813.0 | 164.0 | ... | 23000.0 | 8.5 | 2.35 | 164000.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
The Following | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN |
A Plague So Pleasant | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN |
Shanghai Calling | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN |
My Date with Drew | NaN | NaN | NaN | NaN | ... | NaN | NaN | NaN | NaN |
4916 rows × 27 columns
# 利用mask操作和dropna可以很灵活的删除想删除的数据
# dropna 的all参数代表要整行都为空才能删除,默认值为any表示只要字段中有一个为空即删除
movies.mask(movies.actor_1_facebook_likes <= 1000).dropna(how="all")
color | director_name | num_critic_for_reviews | duration | ... | actor_2_facebook_likes | imdb_score | aspect_ratio | movie_facebook_likes | |
---|---|---|---|---|---|---|---|---|---|
movie_title | |||||||||
Pirates of the Caribbean: At World's End | Color | Gore Verbinski | 302.0 | 169.0 | ... | 5000.0 | 7.1 | 2.35 | 0.0 |
Spectre | Color | Sam Mendes | 602.0 | 148.0 | ... | 393.0 | 6.8 | 2.35 | 85000.0 |
The Dark Knight Rises | Color | Christopher Nolan | 813.0 | 164.0 | ... | 23000.0 | 8.5 | 2.35 | 164000.0 |
Spider-Man 3 | Color | Sam Raimi | 392.0 | 156.0 | ... | 11000.0 | 6.2 | 2.35 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
Cheap Thrills | Color | E.L. Katz | 193.0 | 88.0 | ... | 982.0 | 6.8 | 2.35 | 0.0 |
Happy Christmas | Color | Joe Swanberg | 65.0 | 82.0 | ... | 969.0 | 5.6 | 1.85 | 812.0 |
Counting | Color | Jem Cohen | 12.0 | 111.0 | ... | NaN | 6.0 | 1.78 | 5.0 |
Smiling Fish & Goat on Fire | Color | Kevin Jordan | 21.0 | 90.0 | ... | 467.0 | 7.6 | 1.85 | 0.0 |
1966 rows × 27 columns
15.8.7 使用布尔值、整数、标签进行选取
# 根据布尔条件选取 这里使用loc方法
condition = movies.actor_1_facebook_likes < 1000
movies.loc[condition]
color | director_name | num_critic_for_reviews | duration | ... | actor_2_facebook_likes | imdb_score | aspect_ratio | movie_facebook_likes | |
---|---|---|---|---|---|---|---|---|---|
movie_title | |||||||||
Star Wars: Episode VII - The Force Awakens | NaN | Doug Walker | NaN | NaN | ... | 12.0 | 7.1 | NaN | 0 |
John Carter | Color | Andrew Stanton | 462.0 | 132.0 | ... | 632.0 | 6.6 | 2.35 | 24000 |
Tangled | Color | Nathan Greno | 324.0 | 100.0 | ... | 553.0 | 7.8 | 1.85 | 29000 |
Quantum of Solace | Color | Marc Forster | 403.0 | 106.0 | ... | 412.0 | 6.7 | 2.35 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
The Following | Color | NaN | 43.0 | 43.0 | ... | 593.0 | 7.5 | 16.00 | 32000 |
A Plague So Pleasant | Color | Benjamin Roberds | 13.0 | 76.0 | ... | 0.0 | 6.3 | NaN | 16 |
Shanghai Calling | Color | Daniel Hsia | 14.0 | 100.0 | ... | 719.0 | 6.3 | 2.35 | 660 |
My Date with Drew | Color | Jon Gunn | 43.0 | 90.0 | ... | 23.0 | 6.6 | 1.85 | 456 |
2514 rows × 27 columns
# 比较是否和布尔索引方法得出的结果一致
movies.loc[condition].equals(movies[condition])
True
# 使用iloc利用整数进行获取
# 这里就必须要提取Series中的boll值,返回的也就是一个类型为array的bool数组
movies.iloc[condition.values]
color | director_name | num_critic_for_reviews | duration | ... | actor_2_facebook_likes | imdb_score | aspect_ratio | movie_facebook_likes | |
---|---|---|---|---|---|---|---|---|---|
movie_title | |||||||||
Star Wars: Episode VII - The Force Awakens | NaN | Doug Walker | NaN | NaN | ... | 12.0 | 7.1 | NaN | 0 |
John Carter | Color | Andrew Stanton | 462.0 | 132.0 | ... | 632.0 | 6.6 | 2.35 | 24000 |
Tangled | Color | Nathan Greno | 324.0 | 100.0 | ... | 553.0 | 7.8 | 1.85 | 29000 |
Quantum of Solace | Color | Marc Forster | 403.0 | 106.0 | ... | 412.0 | 6.7 | 2.35 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
The Following | Color | NaN | 43.0 | 43.0 | ... | 593.0 | 7.5 | 16.00 | 32000 |
A Plague So Pleasant | Color | Benjamin Roberds | 13.0 | 76.0 | ... | 0.0 | 6.3 | NaN | 16 |
Shanghai Calling | Color | Daniel Hsia | 14.0 | 100.0 | ... | 719.0 | 6.3 | 2.35 | 660 |
My Date with Drew | Color | Jon Gunn | 43.0 | 90.0 | ... | 23.0 | 6.6 | 1.85 | 456 |
2514 rows × 27 columns
# 利用布尔数组选取相应类型的列
movies.loc[:,movies.dtypes == "object"]
# 同理 使用iloc时要取其 array数组
color | director_name | actor_2_name | genres | ... | movie_imdb_link | language | country | content_rating | |
---|---|---|---|---|---|---|---|---|---|
movie_title | |||||||||
Avatar | Color | James Cameron | Joel David Moore | Action|Adventure|Fantasy|Sci-Fi | ... | http://www.imdb.com/title/tt0499549/?ref_=fn_t... | English | USA | PG-13 |
Pirates of the Caribbean: At World's End | Color | Gore Verbinski | Orlando Bloom | Action|Adventure|Fantasy | ... | http://www.imdb.com/title/tt0449088/?ref_=fn_t... | English | USA | PG-13 |
Spectre | Color | Sam Mendes | Rory Kinnear | Action|Adventure|Thriller | ... | http://www.imdb.com/title/tt2379713/?ref_=fn_t... | English | UK | PG-13 |
The Dark Knight Rises | Color | Christopher Nolan | Christian Bale | Action|Thriller | ... | http://www.imdb.com/title/tt1345836/?ref_=fn_t... | English | USA | PG-13 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
The Following | Color | NaN | Valorie Curry | Crime|Drama|Mystery|Thriller | ... | http://www.imdb.com/title/tt2071645/?ref_=fn_t... | English | USA | TV-14 |
A Plague So Pleasant | Color | Benjamin Roberds | Maxwell Moody | Drama|Horror|Thriller | ... | http://www.imdb.com/title/tt2107644/?ref_=fn_t... | English | USA | NaN |
Shanghai Calling | Color | Daniel Hsia | Daniel Henney | Comedy|Drama|Romance | ... | http://www.imdb.com/title/tt2070597/?ref_=fn_t... | English | USA | PG-13 |
My Date with Drew | Color | Jon Gunn | Brian Herzlinger | Documentary | ... | http://www.imdb.com/title/tt0378407/?ref_=fn_t... | English | USA | PG |
4916 rows × 11 columns
转载:https://blog.csdn.net/qq_42359956/article/details/105541541
查看评论